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Abstract Wedge brakes, featuring self-amplification,
inspire good opportunity to obtain large normal force
by small actuation force. A single degree of freedom
torsional model with harmonic excitation for a driv-
eline with a wedge brake is developed to investigate
the effect of velocity-dependent actuation force. The
stability analysis indicates that instability can occur
even with a constant friction coefficient and is greatly
influenced by the slope of the actuation force. Three
bifurcation points are found: one stable, one unstable,
and the other one Hopf. Phase portraits, time domain
responses, Poincaré maps, and frequency spectra are
provided by nonlinear computation. Three motions are
observed: unidirectional stick-slip, bidirectional stick-
slip, and non-stick-slip. Due to the self amplification,
the wedge brake leads to more stick motions and more
side bands compared with the conventional brake. By
varying the slope, the dynamic response of the driveline
can be synchronous or irregular multi-periodic motion.
The dynamics at negative slope is studied further con-
sidering three other influencing factors, i.e., the initial
actuation force, excitation frequency, and wedge angle.
The results are provided by the comparison with those
of the driveline with a conventional brake.
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1 Introduction

Friction brakes, stopping motions by friction interfaces,
are widely used in vehicle braking systems [1], auto-
matic transmissions [2], and etc. Wedge brakes, fea-
turing self-amplification, can generate large friction
force by small actuation force [3]. Resultantly, wedge
brakes can be energy saving and space saving. Feasibil-
ity studies have been conducted for wedge brake appli-
cations, such as eBrake [4,5], automatic manual trans-
mission [6], and clutch-to-clutch shift transmission [7].
The results show wedge brakes have great potential to
replace conventional friction brakes. However, as we
know, friction interfaces tend to introduce nonlinear
dynamics to braking systems [8], involving intractable
vibration problems [9]. So, we need to concern irregu-
lar dynamics and its engineering significance for wedge
brakes.

Wedge brakes do not change the intrinsic friction,
however, change the ratio of the friction force over
actuation force. For the conventional brake, the nor-
mal force, though determined by external forces, can
be considered as an active actuation force for the fric-
tion interface. The ratio of the friction force over nor-
mal force is defined as the friction coefficient, which is
symmetric about the origin as described in the Coulomb
friction model [10]. However, for the wedge brake, the
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normal force is passive, because it is generated by an
actuation force acting on one side surface of the wedge.
Derived from force equilibrium of the wedge, the ratio
of the friction force over actuation force is associ-
ated with the wedge geometry other than the motion
direction and friction coefficient [7]. On the one hand,
the ratio is greatly amplified compared with the fric-
tion coefficient. On the other hand, the ratio is asym-
metric about the origin; specifically, the ratio at for-
ward motion can be several ten times that at backward
motion. Intuitively, this extreme asymmetry induces
special stick-slip motion and even irregular dynamic
response.

Extensive researches on friction-induced dynamics
have been already conducted for classical friction inter-
faces [11,12]. Nonlinear phenomena have been dis-
covered in numerical and experimental results, such as
stick-slip motions [13,14], limit cycles [15,16], bifur-
cations [17,18], and chaotic motions [19,20]. Friction
characteristics [19], mechanical system parameters [9],
excitation amplitude and frequency [21] and friction
interface deformation [22] are factors inducing nonlin-
ear dynamics, which is unexpected in automotive pow-
ering [23,24], braking [9] and other areas [25]. Nat-
urally, these inducing factors also affect dynamics of
wedge brakes. And, due to the asymmetric character-
istic, dynamic response may be much different. The
stability of wedge brake system is related to the differ-
ence between the wedge angle and friction coefficient
[26]. Unfortunately, no further publication is found on
the wedge brake dynamics, which will be necessary
consideration when the wedge brake is applied in real
system. So this paper aims to expose unique nonlinear
dynamics for wedge brakes.

Another point is noticed that the normal force is
usually considered as a constant in the aforemen-
tioned studies on conventional friction-induced dynam-
ics. However, the normal force is a major control input
and is velocity dependent in close-loop control [24,27].
In the well-known braking squeal or groan problem,
braking vibration is initiated during the process of brak-
ing manipulation [28], which means, the effect of the
normal force profile is not negligible. In the wedge
brake, the normal force is generated by the actuation
force with the asymmetric amplification ratio, and the
actuation force can be a velocity-dependent control
input. Despite the well-known conclusion that a neg-
ative slope in the friction characteristic leads to insta-
bility and self-excitation [19,23], this paper focuses on

the effect of varying actuation force on wedge brake
dynamics even with constant kinetic friction coeffi-
cient.

Friction brakes are commonly modeled as multi-
body systems [13,29] or using finite element meth-
ods [30,31] resulting in models with high numbers of
degrees of freedom (DOF). Nevertheless, for a basic
understanding of the excitation mechanism and the
influence of system parameters, and for active control
of brake vibration, models with a low number of DOF
are more convenient, such as the 3DOF model [32] and
2DOF model [33]. Single DOF (SDOF) models are
also widely used for dry friction oscillator under con-
stant belt velocity and harmonic driving force [34] and
for stability and local bifurcation behavior of the expo-
nential friction model [35]. Chaotic motions, stick-slip
motions, and period doubling phenomena are observed
in a SDOF oscillator [36]. Taking the wedge actuation
mechanism into consideration, a new SDOF torsional
model is established in this paper to study the dynamics
behavior of the driveline under actuation of the wedge
brake.

The goal of this paper was to examine factors influ-
encing stability and dynamic response of the driveline
actuated by the wedge brake under velocity-dependent
actuation force. The dynamic behavior is demonstrated
by comparing against that of the driveline actuated by
a conventional brake. The rest of the paper is organized
as follows. The SDOF model is described in Sect. 2; the
evolution of the root locus and vibration mode is illus-
trated for stability analysis using the linear method in
Sect. 3. Further, a smoothening method is employed for
nonlinear analysis, followed by numerical results and
discussion in Sect. 4. Finally, the conclusion is given
in Sect. 5.

2 Analytical model

The brake decelerates the motion of the driveline by
applying friction force. The SDOF torsional model with
both dry friction and viscous damping elements is illus-
trated in Fig. 1a, where J denotes the moment of inertia
of the driveline, k and c denote the stiffness and vis-
cous damping, T is the external torque of the driveline,
and θ is the angular displacement. The brake actuation
force Fa is applied on the short edge of the wedge,
which generates the friction force Fμ on the friction
interface between the wedge and the friction surface of
the driveline.
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Fig. 1 Model of the driveline with a wedge brake a SDOF model,
b force equilibrium

The governing equation is

J θ̈ (t) + cθ̇ (t) + kθ (t) + RFμ (t) = T (t) , (1)

where R is the equivalent radius of the friction force
Fμ. The force equilibrium of the wedge is illustrated
in Fig. 1b and is expressed mathematically as
(
Fμ + Fa

)/
FN = tan (αw) . (2)

The action force Fa is assumed to be a function of
the relative velocity θ̇ (t) and defined as

Fa (t) = Fa0 + δ · abs
(
θ̇ (t)

)
, (3)

where δ is the slope of Fa , and Fa0 is the value of
Fa at δ = 0N · s/rad. The external torque T on the
driveline is assumed to be a harmonic function as T =
Te · sin (2π · fe · t), where fe is the cyclical frequency.

Given kinetic friction coefficient μk and static fric-
tion coefficient μs , a Coulomb friction model is used
to describe Fμ as

Fμ =
{

FN · μk · sign(θ̇ (t)) θ̇ (t) �= 0
[−FN · μs FN · μs] θ̇ (t) = 0

(4)

Substitution of (4) into (2) yields the following expres-
sion of Fμ under the condition of tan (αw) > μk . The
case of tan (αw) < μk is not studied in this paper for
it results in instability and is not recommended in the
wedge mechanism design [26].

Fμ =
{

Fa · μk · sign(θ̇ (t))
/ (

tan(αw)−μk · sign(θ̇(t))
)

θ̇ (t) �=0[−Fa · μs/ (tan(αw)−μs) Fa · μs/tan(α, ,w )−μs
]

θ̇ (t) �=0

(5)

Thus, the calculation of Fμ is segmented into three parts
for θ̇ (t) > 0, θ̇ (t) < 0 and θ̇ (t) = 0, respectively.
The driveline under brake described in (1) crosses
the three segments; therefore, the nonlinear system is

piecewise linear in terms of the direction of θ̇ (t). The
actuation force Fa affects the stability of the linearized
system under the two cases, θ̇ (t) > 0 and θ̇ (t) < 0,
which are investigated in detail in the following section.

3 Stability analysis

To examine the stability, define the physical system by
the following state equation where X = [x1x2]T is the
state variable vector, A is the system matrix, and U is
the input vector.

Ẋ = AX + U. (6)

Here,

x1 (t) = θ (t) , x2 (t) = θ̇ (t) (7)

Parameters are selected as follows: J = 1 kg m2, k =
10,000 N m/rad, c = 1 N ms/rad, μk = 0.30, μs =
0.33, R = 0.2 m. The cyclical natural frequency is
fn = 15.91 Hz.

From (1), (3), (5) and (7), the system matrix A and
input vector U are derived as

A =
(

0 1
− k

J − c
J − R·δ·μk

J (tan(αw)−μk ·sign(x2(t)))

)

, (8)

U =
(

0
T (t)

J − R·Fa0·μk ·sign(x2(t))
J(tan(αw)−μk ·sign(x2(t)))

)

. (9)

Note that the friction force is split into two parts in
A and U, respectively: one is associated with a state
variable, namely damping, and the other is considered
as an independent external force. For stability analysis,
where the force term in the control input expression (9)
is not considered, the characteristic equation becomes

det

(
λ −1
k
J λ + c

J + R·δ·μk
J (tan(αw)−μk ·sign(x2(t)))

)

= 0

(10)

where, λ is the eigenvalue of the matrix A. Define the

natural frequency ωn =
√

k
/

J and a symbol h as fol-
lowing, the solution of λ is calculated by:

h =−
( c

2J
+ R · δ · μk

2J · (tan (αw) − μk · sign(x2 (t)))

)

(11)

λ = h ±
√

h2 − ω2
n (12)

The asymptotically stable criterion is a negative real
part of λ. Since tan (αw) < μk is not an interested case
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Fig. 2 Summary of stability criterions

of this study as explained before, the stable criterion
for tan (αw) > μk is derived as:

δ · R · μk

c
> μk · sign(x2 (t)) − tan (αw) (13)

Normalized parameters are used to illustrate numer-
ical results. The friction damping is normalized as
defined by η = (δ · R · μk)/c. Define eigenvalues
as λ = σ ± iω. The imaginary parts are normal-
ized with respect to the natural frequency, denoted by

 = ω/ωn . The wedge angle αw is normalized with
respect to the kinetic friction coefficient μk , defined as
α = tan (αw)/μk .

For the convenience of comparison, the conventional
brake is analyzed by giving the SDOF model, linearized
state equation, and stable condition in Appendix. The
stability criteria in terms of η are summarized in Fig. 2.
As seen from Fig. 2a, the critical η = −μk − tan (αw)

when θ̇ (t) < 0 for the wedge brake is less than the
critical η = μk −tan (αw) when θ̇ (t) > 0, so the stable
condition η > μk − tan (αw) is the intersection of the
two cases. This condition is illustrated numerically in
Fig. 2b.

Two differences are observed between the wedge
and conventional brake (1). As seen from Fig. 2a, the
critical η is a constant as −1 for the conventional brake;
however, it is varying along the friction coefficient μk

and the wedge angle αw for the wedge brake (2). As
seen from Fig. 2b, small μk or large αw expands the
stable area of the wedge brake compared that of the
conventional brake; large μk or small αw shrinks the
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Fig. 3 Evolution of the eigenvalue

stable area. In order to gain large amplification ratio,
the wedge angle is always designed to be greater but
close to arctan(μk) [7]. Thus, the value of μk −tan (αw)

is a bit negative but close to zero, and definitely larger
than −1. So the stable area of the wedge brake is less
than that of the conventional brake, which means, the
conventional brake can tolerate more negative slope of
the actuation force.

Further, the solution format of λ in (27) is the same as
that in (12), which means, their eigenvalue evolutions
are similar, though, not identical. Due to the asymmet-
ric characteristic of the wedge brake, the evolutions
are different for θ̇ (t) > 0 and θ̇ (t) < 0, illustrated
in Fig. 3a and b, respectively. For the purposes of easy
comparison, the evolutions of the conventional brake
are plotted in Fig. 3a and b; actually, they are the same
because of the symmetric characteristics.

The eigenvalue real parts for θ̇ (t) > 0 are plotted
in Fig. 3a where both stable (negative σ) and unsta-
ble (positive σ) are clearly seen. This stability analysis
indicates that instability can occur even with a con-
stant friction coefficient and is greatly influenced by
η and accordingly δ, no matter for the wedge brake
or for the conventional brake. The normalized wedge
angle α does not affect the wedge brake stability sig-
nificantly; however, it affects the evolution rate. Large
α gains slow rate. Nevertheless, the evolution rate of
the conventional brake is slower than that of the wedge
brake.
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Two bifurcation points are detected for each case in
the evolution map. The vibration mode collapses when
η is less than the left bifurcation point. As η increas-
ing, a vibration mode appears until η arrives at the
right bifurcation point, and then, the vibration mode
disappears again. Other than those, one Hopf bifur-
cation point is detected for each wedge brake case at
η = μk − tan (αw) for it divides stable and unstable
zones by a limit cycle. For the conventional brake, the
Hopf bifurcation point is at η = −1.

The vibration mode and bifurcation points are sim-
ilarly detected for θ̇ (t) < 0 as shown in Fig. 3b. How-
ever, the evolution rates of 
 and σ for the wedge brake
are much slower than those for θ̇ (t) > 0. Extremely,
the rate at α = 3.43 is slower than that of the conven-
tional brake. In addition, the vibration mode exists in a
wider range of η.

Figures 2 and 3 show positive η tends to fall into the
stable area; whereas, negative η tends to the unstable
area. Therefore, non-positive η is the focus of following
section on nonlinear analysis.

4 Nonlinear computation

Although the linear analysis in the previous section
is useful, it does not provide detailed information on
the nonlinear dynamical behavior of the system. For
example, the studied problem has nonlinear external
inputs which are not expressed in the system matrix
A. As a matter of fact, these signum function inputs
have damper-like function which helps the system to
be more stable or less unstable. Since nonlinear analysis
accounts for all the linear and nonlinear terms to decide
whether the system is stable or not, it is possible for
linear analysis to predict an unstable system, but the
results may be stable because of the damper-like facts.

Two more normalized variables other than η and
α are used for the analysis. The external torque T (t)
is a harmonic function of t with amplitude Te and
frequency fe. The initial actuation force Fa0 is nor-
malized with respect to an equivalent external force,
defined as F0 = Fa0

/(
Te

/
(μk · R)

)
. The frequency

fe is normalized with respect to the natural frequency
fn , defined as f = fe

/
fn .

The friction force expressed in (5) shows disconti-
nuity at zero relative velocity, which leads to incon-
venience for numerical computation. In order to over-
come the computational difficulty, smoothening func-

Fig. 4 Smoothened friction
characteristics
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tions are explored [37], and one simple expression is
employed as below [38]:

μ (vr )=
[

1.0+
(

μs

μk
− 1.0

)
e−ς ·abs(vr )

]
· tanh (ξ · vr )

(14)

in which vr is the relative speed on the friction interface,
ς and ξ are two tuning parameters. The calculation of
vr is

vr = R · θ̇ (t) . (15)

The value of μ is calculated as shown in Fig. 4, given
ς = 6 and ξ = 100. Besides Fμ

/
Fa is derived from

(5) by the substitution of μk with μ of (14). The value
is also plotted in Fig. 4 at α = 1.03. Fμ

/
Fa reaches

5.58 when vr > 0, however, reaches 0.46 when vr < 0.
Thus, the former is 12 times the latter. The amplification
ratio becomes larger when α approaches 1 [7], and vice
versa.

One example with stick-slip motion is given in
Fig. 5 to show the comparison of the numerical
results between the Coulomb friction model and the
smoothened model in (14). The numerical calculation
of Fμ in (5) for the Coulomb friction model is derived
as below:

Fμ =
⎧
⎨

⎩

Fμ_ max θ̇ (t) > ε

Fμ_ min θ̇ (t) < −ε

sat (Fs) −ε ≤ θ̇ (t) ≤ ε

(16)

in which ε is a small positive number with the value
10−4 in the simulation, and

Fμ_ max = Fa · μk
/
(tan (αw) − μk), (17)

Fμ_ min = −Fa · μk
/
(tan (αw) + μk), (18)

Fs = (
T (t) − J θ̈ (t) − cθ̇ (t) − kθ (t)

)/
R (19)

sat (Fs) =
⎧
⎨

⎩

Fμ_ max Fs > Fμ_ max

Fs Fμ_ min ≤ Fs ≤ Fμ_ max

Fμ_ min Fs < Fμ_ min

(20)
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Fig. 5 Comparison between smoothened and Coulomb friction
model (η = 0, f = 0.63, F0 = 0.09, α = 1.21) a friction
characteristics, b angular velocity

The computation is implemented in MATLAB/
SIMULINK. The solver configurations for the two
models are the same, which use ODE14X(extrapolation)

with fixed fundamental sample time as 10−4s and the
extrapolation order as 4.

It can be seen from Fig. 5a that the two models
generate identical values of Fμ

/
Fa when vr is away

from zero, and the smoothening function approaches
the Coulomb model well in a continuous way when
vr approaches zero. As seen from Fig. 5b, the dynamic
responses calculated from the two models behave obvi-
ous stick–slip motions and match each other well.
Therefore, although no mathematical proof is given
that the smoothening function is correct, it seems to
give accurate results.

Nevertheless, there are two differences between the
two models regarding to numerical calculation. First,
the calculation of the smoothened model takes 7.6 s
(for the example case with 5 s simulation time), and
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Fig. 6 Stick-slip motions of the driveline with the wedge brake
at η = 0. a non-stick-slip motion at f = 0.63, F0 =
0.1200, α = 1.18, b bidirectional stick-slip motion at f =

0.63, F0 = 0.09, α = 1.18, c unidirectional stick-slip motion
at f = 1.89, F0 = 0.114, α = 1.18

123



Stability and response of a self-amplified braking system 2465

(a)

(b)

phase portrait angular velocity Poincaré map frequency spectrum

(c)

-0.1 0 0.1
-10

-5

0

5

10

x
1
 (rad)

x 2
 (r

ad
/s

)

20 20.1 20.2
-10

-5

0

5

10

t (s)

x 2
(t)

 (r
ad

/s
)

-0.2 0 0.2
-10

-5

0

5

10

x
1
(nT) (rad)

x 2
(n

T
) (

ra
d/

s)

0 2 4 6
0

2

4

6

f

X
2
(f)

 (r
ad

/s
)

-0.1 0 0.1
-10

-5

0

5

10

x
1
 (rad)

x 2
 (r

ad
/s

)

20 20.1 20.2
-10

-5

0

5

10

t (s)

x 2
(t)

 (r
ad

/s
)

-0.2 0 0.2
-10

-5

0

5

10

x
1
(nT) (rad)

x 2
(n

T
) (

ra
d/

s)

0 2 4 6
0

2

4

6

f

X
2
(f)

 (r
ad

/s
)

-0.02 0 0.02
-4

-2

0

2

4

x
1
 (rad)

x 2
 (r

ad
/s

)

20 20.1 20.2
-4

-2

0

2

4

t (s)

x 2
(t)

 (r
ad

/s
)

-0.2 0 0.2
-10

-5

0

5

10

x
1
(nT) (rad)

x 2
(n

T
) (

ra
d/

s)

0 2 4 6
0

1

2

3

f
X

2
(f)

 (r
ad

/s
)

Fig. 7 Motions of the driveline with the conventional brake at η = 0. (a) motion at f = 0.63, F0 = 0.1200, α = 1.18 (b) motion at
f = 0.63, F0 = 0.09, α = 1.18 (c) motion f = 1.89, F0 = 0.114, α = 1.18
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Fig. 8 Bifurcation diagrams of x2 (nT ) gversus normalized
slope η of actuation force. a wedge brake and b conventional
brake

that of the Coulomb model takes 15.1 s. So the former
is much shorter than the latter. Second, the calculation
of the Coulomb model tends to be out of convergent
for small α or large Fa due to the discontinuity, while

the calculation of the smoothened model works well.
Since this paper will examine the dynamic behavior
of the self-amplified braking system in wide ranges of
parameter variations, the smoothening function in (14)
is employed for the nonlinear computation.

The numerical results firstly demonstrate three typ-
ical motions observed in the driveline with the wedge
brake, i.e., unidirectional stick-slip, bidirectional stick-
slip, and non-stick-slip. Then, the numerical computa-
tion investigates the effect of η on driveline dynamics
using a bifurcation diagram. The results provide phase
portraits, time domain responses, Poincaré maps, and
frequency spectra. Since η < 0 introduces more com-
plicated dynamics, the dynamics at η < 0 is stud-
ied further considering three influencing factors, i.e.,
F0, f , and α. The values of the varying parameters
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Fig. 9 Dynamic responses with different η at f = 0.63, F0 = 0.036, α = 1.18 for wedge brake

are selected according to the segments in the bifurca-
tion diagrams. For each case, the nonlinear dynamic
behavior of the driveline with the conventional brake
is computed and compared with the same parameter
values.

All data throughout the 25 s running time of the
model are memorized and utilized to generate the
dynamic responses and frequency spectra. And the last
5s data are utilized to generate the phase portraits, the
Poincaré maps, and the bifurcation diagrams.

The time domain responses and the phase portraits
can be easily obtained as the time series of the angular

displacement and angular velocity of the driveline are
memorized in the calculation procedure. A Poincaré
section, on which the points of the time series are at the
constant time interval Tt (Tt = 1

/
fe), is selected to get

the Poincaré map. In this paper, the angular velocity of
the driveline at t1, t1 + Tt , t1 +2Tt , . . . , t1 +5 · fe · Tt

is memorized and plotted on the Poincaré map. t1 is
the time at which the oscillation of the driveline has
already reached stable, and it is selected as 20s for the
cases studied in this paper.

To generate the bifurcation diagram, the obtained
points on the Poincaré map are used with a certain
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Fig. 10 Dynamic responses with different η at f = 0.63, F0 = 0.036, α = 1.18 for conventional brake

varying parameter as the bifurcation parameter. In this
paper, the actuation force slope η, initial actuation force
F0, external torque frequency f and the wedge angle α

are selected as the bifurcation parameters, respectively.

4.1 Stick-slip motions

Three types of stick-slip motion are observed in the
driveline with the wedge brake, illustrated in Fig. 6.
For comparison, the motions of the driveline with the
conventional brake are given in Fig. 7.

The non-stick-slip motion crosses the zero veloc-
ity point without a stop. It can be seen from the time
domain response of Fig. 6a that the rate of the angular
velocities of the driveline with the wedge brake before
and after the zero velocity points is distorted, unlike
the smoothness of that with the conventional brake as
shown in Fig. 7a. The phase portrait in Fig. 6a also
expresses the distortion. The frequency spectrum of
the driveline with the wedge brake contains more side
bands at other than the external torque frequency, how-
ever, that with the conventional friction brake concen-
trates on the external torque frequency.
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Fig. 11 Bifurcation diagrams of x2 (nT ) gversus normalized ini-
tial actuation force F0. (a) wedge brake and (b) conventional
brake

Bidirectional stick-slip motion has been reported in
the many literatures on friction-induced dynamics [28]
and is also found in the driveline with the wedge brake.
By decreasing F0, the results are plotted in Fig. 6b. It is
observed that the edge from negative to zero velocity is
much quicker than that from zero to negative, and the
edge from zero to positive is milder than that from pos-
itive to zero. This asymmetry differs from normal bidi-
rectional stick-slip motions under harmonic excitation.
The frequency spectrum contains side bands other than
the external torque frequency. For the driveline with the
conventional brake, the decreasing F0 does not affect
the dynamic response significantly, as Fig. 7b looks
similar to Fig. 6a without distortion.

Unidirectional stick-slip is a unique motion found
in the driveline with wedge brake by increasing f and
increasing F0, as shown in Fig. 6c. The positive angu-
lar velocities approximately equal to zero, which fall
in the range of static friction in Fig. 4. These velocities
are not exactly zero due to the smoothening approxi-
mation. Nevertheless, these points can be considered to
be stick. On the other hand, the points with big negative
angular velocity are slipping. Unlike the normal stick-
slip motion which slips in both positive and negative
direction, the wedge brake-induced stick-slip motion
only slips at negative velocity, however, does not slip
at positive velocity. The reason lies in much larger fric-
tion force at positive velocity than at negative force,
as shown in Fig. 4. Besides, the frequency spectrum
contains more energy in side bands due to the stick
motion. For the driveline with the conventional brake,
the increasing f and increasing F0 do not introduce
special stick-slip motion, only with an external excited
limit cycle and a clean frequency spectrum at excitation
frequency.

4.2 Effect of η

In this section, the normalized slope of the actuation
force η is selected as the bifurcation parameter and
varies from 12 to −120 covering the often used oper-
ation style from mild to abrupt. With an increasing η

and other parameter constant, the bifurcation diagrams
obtained for the wedge brake and conventional brake
are shown in Fig. 8.

Figure 8a shows that the response of the driveline
with the wedge brake exhibits 2T-periodic motion at
large negative η (η < −30), transits to quasi-periodic
motion at η = −30, after that, transits to multi-periodic
motion until η = −18, and then exhibits synchronous
motion when η > −18. On the other hand, Fig. 8b
shows that the response of the driveline with the con-
ventional brake exhibits quasi-periodic motion when
η ≤ −24 and then transits to synchronous motion when
η > −24. Thus, the typical η values are selected as
−6,−24,−30, and −60. The phase portraits, angu-
lar velocity, Poincaré map, and frequency spectrum for
the wedge brake and conventional brake are shown in
Figs. 9 and 10, respectively.

For the wedge brake, the response at η = −6
exhibits asymmetry distortions at negative or positive
angular velocity, which are similar to the distortion at
η = 0 in Fig. 6a. Unidirectional stick-slip motions
are found in the angular velocity at η = −24,−30,
and −60. When the angular velocity goes from posi-
tive to negative, a stick motion occurs; however, when
the velocity goes from negative to positive, non-stick-
slip occurs. The reason is more energy dissipated due
to larger friction force at positive velocity compared
with that at negative velocity due to the asymmetric
characteristic of the wedge brake. The Poincaré map at
η = −30 shows irregular multi-periodic motions. The
responses at η = −24 and −60 are simpler than that of
the conventional brake in Fig. 10. The frequency spec-
tra of the wedge brake exhibit many side bands other
than the natural frequency and excitation frequency.

On the other hand, the responses of the driveline
with the conventional brake only exhibit non-stick-slip
motions. The frequency spectra concentrate on the nat-
ural frequency and excitation frequency.

4.3 Effect of F0 when η < 0

In this section, the normalized initial actuation force F0

is selected as the bifurcation parameter. The value of F0
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Fig. 12 Dynamic responses with different F0 at η = −24, f = 0.63, α = 1.18 for wedge brake
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Fig. 13 Dynamic responses with different F0 at η = −24, f = 0.63, α = 1.18 for conventional brake
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Fig. 14 Bifurcation diagrams of x2 (nT ) gversus normalized
excitation frequency f a wedge brake and b conventional brake

varies from 0.012 to 0.12 (with Te varies from 1,500 to
150 Nm at Fa0 = 300 N), covering the operation from
light to heavy braking. η is selected to be −24 since
it represents an often used mild braking operation and
induces the typical 2T-periodic motion as illustrated in
Fig. 8. With an increasing F0 and other parameter con-
stant, the bifurcation diagrams are obtained as shown
in Fig. 11.

Figure 11a indicates that the response evolution
can be divided into 6 segments. The first segment
exhibits quasi-periodic motion at small F0 (0.012 ≤
F0 ≤ 0.019). After that, the response transits to multi-
periodic motion when 0.019 < F0 ≤ 0.028, reverts to
quasi-periodic motion when 0.028 < F0 ≤ 0.034,
transits to small amplitude multi-periodic motion when
0.034 < F0 ≤ 0.058, and then, transits to 2T-periodic
motion when 0.058 < F0 ≤ 0.072, finally, transits
to synchronous motion when 0.072 < F0 ≤ 0.120.
On the other hand, the response evolution of the driv-
eline with the conventional brake in Fig. 11b can
only divided into two segments. The first segment
exhibits quasi-periodic motion when 0.012 ≤ F0 ≤
0.044. After that, the motion transits to synchronous
motion when 0.044 < F0 ≤ 0.120. Therefore, the
wedge brake gains synchronous motion at larger F0

and induces more types of motion other than the quasi-
periodic motion at small F0. The phase portraits, angu-
lar velocity, Poincaré map, and frequency spectrum at
F0 = 0.015, 0.024, 0.031, 0.042, 0.067, and 0.120
(each falls into the 6 segments, respectively) under the
two conditions are shown in Figs. 12 and 13, respec-
tively.

At F0 = 0.015, the responses of the driveline with
the wedge brake and conventional brake both exhibit
quasi-periodic motions. The Poincaré map for the con-
ventional brake is a standard ellipse, however, that for

the wedge brake is distorted. Other than in the quasi-
periodic motion, the distortion also occurs in multi-
periodic motions as shown in Fig. 12a–d.

It is observed that the three types of stick-slip motion
occur along with the increasing of F0. The response
exhibits non-stick slip motion at F0 = 0.015, asym-
metric bidirectional stick-slip motion at F0 = 0.024,
0.031, 0.042, and 0.067, and, Unidirectional stick-slip
motion occurs at F0 = 0.120. Further, larger F0 comes
up with more stick motion, because larger friction force
is generated. Besides, more stick motions come up with
more side bands in frequency spectra.

On the other hand, the responses of the driveline
with the conventional brake only exhibit non-stick-slip
motions. The stable duration at F0 = 0.042 is longer
than that at other values, nevertheless, the state vari-
able approaches a point after a while. The frequency
spectra at any of the calculated values are rather neat,
concentrating on the natural frequency and excitation
frequency.

4.4 Effect of f when η < 0

In this section, the normalized excitation frequency f is
selected as the bifurcation parameter and varies from
0.3 to 3. With an increasing f and other parameter
constant, the bifurcation diagrams are shown in Fig. 14.

Figure 14a indicates that the response evolution
can be divided into 5 segments. The first segment
exhibits synchronous motion at small f (0.3 ≤ f <

0.56). After that, the response transits to multi-periodic
motion when 0.56 ≤ f < 1, reverts to synchronous
motion at f = 1, again, transits to multi-periodic
motion when 1 < f ≤ 1.57, and transits to synchro-
nous motion when 1.57 < f ≤ 3. Further, the value
of x2 (nT ) is positive when f < 1, whereas negative
when f > 1. The response evolution in Fig. 14b for
the conventional brake is similar to that in Fig. 14a.
They differ in the f value at the beginning of the multi-
periodic motion. The value is 0.69 for the conventional
brake, compared with 0.57 for the wedge brake. The
phase portraits, angular velocity, Poincaré map, and fre-
quency spectrum at f = 0.31, 0.63, 1.0, 1.26, and 2.07
(each falls into the 5 segments, respectively) under the
two conditions are shown in Figs. 15 and 16, respec-
tively.

The responses of the driveline with the wedge brake
exhibit apparent stick motions at f = 0.31, 0.63, and
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Fig. 15 Dynamic responses with different f at η = −24, F0 = 0.024, α = 1.18 for wedge brake

1.26; however, those with the conventional brake do
not occur non-stop stick motion. The reason is that the
friction force generated by the wedge brake is 12 times

that by the conventional brake; therefore, more power
is dissipated through the friction interface of the wedge
brake.
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Fig. 16 Dynamic responses with different f at η = −24, F0 = 0.024, α = 1.18 for conventional brake

The Poincaré section maps of the multi-periodic
motions at f = 0.63 and 1.26 for the wedge are
rather irregular and have no symmetric axis. On the

contrary, those for the conventional brake are more
regular and come up with more than one symmetric
axis.
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Fig. 17 Bifurcation diagrams of x2 (nT ) versus normalized
wedge angle α

When f < 1, with an increasing f , the side bands
of the driveline frequency spectra disappear gradually.
And when f reaches the resonance frequency, i.e., f =
1, the driveline spectrum is neat only containing f =
1. After that, side bands occur in the multi-periodic
motions until the response reaches synchronous motion
at a large f in the fifth segment. On the other hand,
as a whole, the frequency spectra for the conventional
brake do not exhibit side bands as much as those for the
wedge brake, because much less stick motions occur.
Extremely, the spectra at f = 1 and at large f of the
fifth segment are rather neat without side band.

4.5 Effect of α when η < 0

In this section, the normalized wedge angleα is selected
as the bifurcation parameter. The value of α varies from
0.33 to 8.60, covering the possible range for the wedge
brake design. Because the conventional brake is not
associated with α, only the effect on the wedge brake
is discussed in this section. With an increasing αand
other parameter constant, the bifurcation diagram is
obtained as shown in Fig. 17.

It can be seen that the response evolution can be
divided into 2 segments. The first segment exhibits syn-
chronous motion at small α(0.33 ≤ α < 1.41). After
that, the response transits to multi-periodic motion at
large α(1.41 ≤ α < 8.60). The phase portraits, angu-
lar velocity, Poincaré map, and frequency spectrum
at α =0.68 and 5.20 (each falls into the 2 segments,
respectively) are shown in Fig. 18.

The driveline response exhibits unidirectional stick-
slip motion at α = 0.68. The reason is that a big friction
force is generated, so the power from the excitation is
quickly dissipated through the friction interface. At the
same time, many side bands occur in the frequency
spectrum.
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Fig. 18 Dynamic responses with different α at f = 0.63 η = −24, F0 = 0.024 for wedge brake
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When applying a large α, asymmetric response com-
bined with stick-slip motions is observed at α = 5.20.
Because less friction force is generated at large α, less
stick motions are induced. Resultantly, the frequency
spectrum concentrates on the natural frequency and
excitation frequency.

5 Conclusion

A SDOF torsional model with harmonic excitation for
a driveline with a wedge brake is developed to inves-
tigate the effect of velocity-dependent actuation force.
Stability analysis in terms of the slope of the actuation
force η based on the linearized model is implemented,
followed by nonlinear computation using smoothened
friction characteristics. The results are provided by the
comparison with the results of the driveline with a con-
ventional brake.

The stability analysis indicates that instability can
occur even with a constant friction coefficient, and is
greatly influenced by η, no matter for the wedge brake
or for the conventional brake. The critical η is asso-
ciated with the friction coefficient μk and the wedge
angle α for the wedge brake, however, is a constant
as −1 for the conventional brake. Small μk or large α

expands the stable area of the wedge brake. As a whole,
positive η tends to fall into the stable area, whereas neg-
ative η to the unstable area. Three bifurcation points are
found for the two brakes, respectively; among them one
falls into the stable area, one into the unstable area, and
the other one is a Hopf bifurcation point.

Phase portraits, time domain responses, Poincaré
maps, and frequency spectra are obtained by nonlinear
computation. Three typical motions are observed for
the wedge brake, i.e., unidirectional stick-slip, bidirec-
tional stick-slip, and non-stick slip, which demonstrate
the asymmetric characteristics from the wedge. Due to
the self amplification, the wedge brake leads to more
stick motions compared with the conventional brake.
Resultantly, more side bands occur.

Using the given parameters, the dynamic response
of the driveline with the wedge brake is synchronous
motion when η > −18; whereas multi-periodic motion
when η ≤ −18. Besides, the dynamic response is
also affected by the initial actuation force F0, exci-
tation frequency f , and wedge angle α. For example,
at η = −24, large F0(F0 > 0.044), extreme small or
large f ( f > 0.3 or f > 1.57), and small α(α < 1.41)

outcome synchronous motions rather than the multi-
periodic motions.

Acknowledgments The authors would like to thank Chinese
National Science Foundation for the support on this project
(Grant No. 51105244).

Appendix

The SDOF model of the driveline with a conventional
brake is shown in Fig. 19. The actuation force Fa is
acting as the normal force vertical to the friction inter-
face.

The governing equation is

J θ̈ (t) + cθ̇ (t) + kθ (t) + RFμ (t) = T (t) (21)

in which Fμ is described in Coulomb friction model as

Fμ =
{

Fa · μk · sign(θ̇ (t)) θ̇ (t) �= 0[−Fa · μs FN · μs
]

θ̇ (t) = 0
(22)

The system matrix A and input vector Uare derived
as

A =
(

0 1
− k

J − c
J − R·δ·μk

J

)
, (23)

U =
(

0
T (t)−R·Fa0·μk ·sign(x2(t))

J

)
. (24)

The characteristic equation is

det

(
λ −1
k
J λ + c

J + R·δ·μk
J

)
= 0. (25)

k

c

T

J

aF

F μ

θ

Fig. 19 Model of the driveline with a conventional brake
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Define the natural frequency ωn =
√

k
/

J and a symbol
h as following, the solution of λ is calculated by

h = −
(

c

2J
+ R · δ · μk

2J

)
< 0 (26)

λ = h ±
√

h2 − ω2
n . (27)

Therefore, the asymptotically stable criterion is derived
as

R · δ · μk
/

c > −1. (28)

Replaced by the normalized parameter η, the criterion
becomes

η > −1. (29)
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