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ABSTRACT:
In this work, a set of compact analytical formulas is derived expressing the three-dimensional acoustic radiation tor-

que (ART) exerted on a particle of arbitrary shape embedded in a fluid and insonified by an arbitrary acoustic field.

This formulation enables direct computation of the ART from the angular spectrum based beam shape coefficients

introduced by Sapozhnikov and Bailey [J. Acoust. Soc. Am. 133, 661–676 (2013)] and the partial wave coefficients.

It is particularly well suited to determine the ART exerted on a particle when the acoustic field is known in a source

plane. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0002491
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I. INTRODUCTION

The acoustic radiation torque (ART) exerted by an arbi-

trary acoustic field on a particle can, in general, be decom-

posed into three contributions:1 one resulting from the

incident wave scattering by the particle, one induced by

absorption of the acoustic field by the particle,2 and one

resulting from the wave absorption in the viscous boundary

layer surrounding the particle.3–5 All these contributions are

nonlinear second order effects, and not first order as sug-

gested by the misleading title in Ref. 3. In addition, the

particle can also be set in rotation by the so-called Eckart

streaming6—a flow resulting from the thermo-viscous

absorption of the wave in the bulk of the fluid—in particular,

when the incident beam is carrying angular momentum.1,7,8

The ART can be calculated by transferring the integration of

time-averaged stress tensor of angular momentum flux over

the particle surface to a far-field spherical surface centered in

the mass center of the particle, as first demonstrated by

Maidanik.9,10

Based on this idea, Zhang and Marston11 derived a

compact formula of the axial ART (Tz) acting on an axisym-

metric object centered on the axis of a cylindrical acoustical

vortex beam beyond the paraxial approximation. The signifi-

cance of energy dissipation in the vortex beam case was

originally discussed in the paraxial limit.12 Zhang and

Marston showed that, in this configuration, the scattering

contribution vanishes and the ART is proportional to the

absorbed power (Pabs) with a factor M=x, with M the

beam’s topological charge and x the angular frequency, i.e.,

Tz ¼ PabsM=x. For a sphere in a Bessel vortex beam, the

relation between dissipation and scattering was analyzed by

Zhang and Marston with an explicit expression of Pabs.
10,13

The theory applies for an elastic sphere in an inviscid fluid,

and is also applicable for a sphere embedded in a weakly

viscous fluid by modifying the scattering coefficients of the

sphere.1,5,11,14 However, this theory is limited2 and cannot

address the following situations: (i) non-axisymetric beams

acting on a sphere (e.g., offset incidence of vortex beam on

a sphere or oblique incidence on a spheroid and cylinder),

(ii) non-axisymmetric objects with respect to the incident

direction (e.g., broadside incidence on a spheroid), and (iii)

multiple particles.

In 2012, Silva et al.15 used a spherical wave expansion

of the incident and scattered beam—the so-called multipole

expansion method (MEM)—to determine ART formulas

applied on an arbitrary located sphere insonified by an arbi-

trary incident field in terms of the incident and scattered

beam shape coefficients (BSC, the coefficients corresponding

to the projection of the wavefields on the spherical wave

basis). These ART formulas were recovered later on by

Gong et al.2 and extended to the case of arbitrary shape par-

ticles by using the T-matrix method. These theoretical devel-

opments were used to explore physical mechanisms at the

origin of the three-dimensional (3D) torque reversal.

But one major difficulty with the MEM is to calculate

the BSC for an arbitrary field and an arbitrary located

sphere. Baresch et al.16 demonstrated that when the BSC are

known for a specific sphere location, they can be determined

for any configuration by translating and rotating the spheri-

cal basis with some numerical toolbox. Also, for specific

wavefields it is possible to determine analytical expressions

of the BSC for an arbitrary located particle. The most simple

configuration is the plane wave, since in this case the BSCs

do not depend on the sphere location owing to the wavefield

symmetry. The case of cylindrical Bessel beam (CBB) was

treated by Gong et al.,17 who derived analytical expressions

of the BSC for off-axis arbitrary incidence using Graf’s

addition theorem. This expression was recovered later on by
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Zhang et al.18 using a different method. Nevertheless, all

these methods are difficult to set into practice when analyti-

cal expressions of the incident beam are not known.

Recently, Zhao et al.19 evaluated three methods to deter-

mine the BSCs to compute the force for arbitrary (and in

particular experimentally measured) acoustic fields: The

first one relies on the orthogonality property of the spherical

harmonics. From this property, the BSC can be obtained

from a scalar product (integral over a spherical surface) of

the wavefield and the spherical harmonics. This approach

was investigated by Silva20 to solve the off-axis scattering

problem. Nevertheless, this method (i) requires to know or

measure the value of the acoustic field over a sphere sur-

rounding the insonified particle and (ii) was shown to induce

fluctuation when calculating the acoustic radiation force and

might lead to similar issues when computing the ART. The

second method relies on the knowledge/measurement of the

acoustic field at random points in a spherical volume and on

the resolution of the inverse problem by a sparse approach.

Finally, the third method is based on the decomposition of

the incident field into a sum of plane waves using the angu-

lar spectrum method (ASM) introduced by Sapozhnikov and

Bailey21 for the calculation of the acoustic radiation force.

The major advantages of this last method are that (i) only

the knowledge of the field in one plane is required (though

the source can be plane or curved) and (ii) that the ASM-

based BSC can be computed from simple integration of the

angular spectrum (the two-dimensional, 2D, spatial Fourier

transform of the field in the reference plane) over a disk in

the reciprocal space. Hence it is easy to set in practice, espe-

cially when using planar holographic transducers able to

produce complex fields, such as acoustical vortices22–25 or

when the acoustic field can be measured in a reference

plane.19,26

In this paper, we derive a compact analytical formula

expressing the torque applied by an arbitrary field on an

arbitrary located particle of arbitrary shape and size as a

function of the ASM-based BSCs. The formulas are vali-

dated through comparison with previous results obtained by

Gong et al.2 with the MEM for an off-axis viscoelastic

sphere insonified by a CBB. Note that here (see Appendix

C), the BSC for CBB of off-axis arbitrary incidence is

recovered with the ASM method. Finally, the potential of

this approach is illustrated by calculating the torque applied

on a 5 lm particle insonified by a one-sided focused vortex

beam produced by a plane active holographic transducer

similar to the one used by Baudoin et al.25,27 to trap micro-

particles and cells.

II. ANGULAR SPECTRUM BASED ART FORMULAS

In this section, we give a brief overview of the main

steps leading to the derivation of the angular spectrum based

ART formulas (with the same notations as in Ref. 2). The

ART exerted by an acoustic field on a particle can be calcu-

lated by transferring the integration of the time-averaged

(h�i) stress tensor of the angular momentum flux over the

particle surface to a far-field spherical surface S0.2,9,10,15

Based on the divergence theorem, the integral expression of

the ART is

T ¼ �q0

ð ð
S0

hLir� dS� q0

ð ð
S0

hðr� uÞuidS; (1)

where hLi ¼ h1=2 u � uÞ � p2=ð2q0c2
0Þi is the time-averaged

acoustic Lagrangian, r is the field point, p is the total acous-

tic pressure field (incident þ scattered), u is the total acous-

tic velocity vector, q0 is the fluid density at rest, c0 is the

fluid sound speed, and dS ¼ n � r2 sin hdhdu is the differen-

tial surface in the far field with n the outward unit normal

vector. If S0 is a sphere whose center coincide with the refer-

ential center, then r� n ¼ rn� n ¼ 0 and the first term in

Eq. (1) vanishes. Then, the incident (index “i”) and scattered

(index “s”) acoustic velocity u and pressure p fields can be

described in terms of acoustical potentials U as

ui;s ¼ rUi;s and pi;s ¼ ixq0Ui;s; (2)

with i is the imaginary unit and x the angular frequency.

Hence, the ART expression in Eq. (1) can be written in

terms of the incident (Ui) and scattered (Us) velocity poten-

tials as

T¼q0

2
Im

ð ð
S0

@U�i
@r

LUsþ
@U�s
@r

LUiþ
@U�s
@r

LUs

� �
dS

( )
;

(3)

where “Im” designates the imaginary part, the star super-

script the complex conjugate and L ¼ �iðr�rÞ is the

angular momentum operator, with its components in the

three directions and their recursion relations with normal-

ized spherical harmonics given in detail in Appendix A.

Now, assuming that the incident pressure field is known

in a plane defined as z¼ 0, pijz¼0 ¼ piðx; y; 0Þ, the angular

spectrum Sðkx; kyÞ of the acoustic field (that is nothing but

the 2D spatial Fourier transform of the complex temporal

harmonic amplitude of the field in this plane) reads

S kx; kyð Þ ¼
ðþ1
�1

ðþ1
�1

piðx; y; 0Þe�ikxx�ikyydxdy; (4)

with x and y the cartesian coordinates in the plane, kx and ky

the wavenumber components in x and y directions. Then,

the field at any point can be calculated by propagating each

plane wave composing the source plane up to the target

point (x, y, z),

piðx; y; zÞ ¼
1

4p2

ð ð
k2

xþk2
y�k2

Sðkx; kyÞ

� eikxxþikyyþi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
zdkxdky ; (5)

where k ¼ x=c0 is the wave number in fluid. In this way,

the acoustic field is decomposed into an infinite sum of

plane waves and the angular spectrum Sðkx; kyÞ characterizes
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the relative magnitude of each plane wave. The next step is

to solve the scattering problem. For this purpose, this plane

wave decomposition must be turned into a spherical wave

decomposition, more suitable to solve the scattering prob-

lem (see Sapozhnikov and Bailey21),

pi ¼
1

p

X1
n¼0

Xn

m¼�n

inHnmjnðkrÞYnmðh;uÞ; (6)

where Ynmðh;uÞ are the spherical harmonics and the Hnm

represent the respective weight of each spherical wave and

hence are nothing but ASM-based BSCs,

Hnm ¼
ð ð

k2
xþk2

y�k2

S kx; kyð ÞY�nm hk;ukð Þdkxdky; (7)

with cos hk ¼ ½1� ðk2
x þ k2

yÞ=k2�1=2
and uk ¼ arctanðky=kxÞ.

This expression results from the known decomposition of a

plane wave into a sum of spherical waves. Analytical solutions

of the scattering problem for spheres embedded in a fluid are

known in many cases including rigid,28 elastic,29 or visco-

elastic particles.1,2 For non-spherical particles, the scattering

problem can be handled with the so-called T-matrix

method.30–35 Assuming prior knowledge of the scattering coef-

ficients, the scattered field can be written under the form

ps ¼
1

p

X1
n¼0

Xn

m¼�n

inHnmAnmhð1Þn ðkrÞYnmðh;uÞ; (8)

with Anm the partial wave coefficients which only depend on

the index n for a spherical shape, having An ¼ ðsn � 1Þ=2

with sn the scattering coefficients, and depend on both n and

m for non-spherical shapes.2

Now the incident and scattered pressure fields are given

in terms of the BSC Hnm based on the ASM.21 The incident

(Ui) and scattered (Us) velocity potentials can be easily

obtained by using the second equation of Eq. (2), which can

then be substituted into Eq. (3). Since the integral is per-

formed on the far field surface S0, the asymptotic expressions

of Bessel functions can be used [Eq. (A1) in Appendix A],

which combined to the recursion relation of Bessel functions

[Eqs. (A2) in Appendix A] leads to the following expression

of the ART expression in terms of Hnm and Ym
n :

T ¼ � 1

2p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�n

X1
n¼0

Xn0

m0¼�n0
1þ Am�

n

� �
Am0

n0

(

�H�nmHn0m0

ð ð
S0

Ym�

n LYm0

n0

� �
sin hdhdu

	
: (9)

The final compact expression of the 3D ART in terms

of the Hnm coefficients can be derived by using the recursion

and orthogonality relations of the normalized spherical har-

monics (see details in Appendix B),

Tx ¼ �
1

4p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�nþ1

bm
n Cm

n H�nmHn;m�1

( )
;

(10)

Ty ¼ �
1

4p2q0k3c2
0

Im
X1
n¼0

Xn

m¼�nþ1

bm
n Cm

n H�nmHn;m�1

( )
;

(11)

Tz ¼ �
1

2p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�n

mDm
n H�nmHnm

( )
; (12)

with bm
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� mþ 1Þðnþ mÞ

p
; Cm

n ¼ Am�1
n þ 2Am�1

n Am�
n

þAm�
n ; Dm

n ¼ Am
n þ Am

n Am�
n . Note that the prior ART formu-

las by Silva et al.15 were not written in a compact form since

they do not express the scattered BSC in terms of the prod-

uct of the incident BSC and An for a spherical shape and

have index issues.36 A thorough comparison between the

present formula and the one obtained by Silva et al.15 is pro-

vided in Ref. 37.

III. VALIDATION OF THE ANGULAR SPECTRUM
BASED ART FORMULAS FOR AN OFF-AXIS VISCO-
ELASTIC SPHERE INSONIFIED BY A BESSEL BEAM

To validate the ART expressions obtained with the

ASM in the previous section, the torque exerted on an off-

axis viscoelastic sphere insonified in an inviscid fluid by a

cylindrical Bessel vortex is calculated with Eqs. (10)–(12)

and compared with the results obtained with the MEM17 by

Gong et al.2 Note that for a sphere in a vortex beam, there

are two forms of rotations when the sphere is off the beam

axis: (i) the orbital rotation of the sphere around the beam

axis induced by the azimuthal force, and (ii) the spin rota-

tion of the sphere around its own mass center by the torque.

For a non-absorbing sphere located on the axis of the vortex,

there is no axial torque following the theory proposed by

Zhang and Marston11 (Tz ¼ PabsM=x) since Pabs¼ 0. In this

configuration, analytical expression of the Hnm coefficients

is given by (see detailed analytical derivation with ASM in

Appendix C 2)

Hnm ¼ 4p2xq0U0nnmiM�mþ1Pm
n ðcos bÞ

� Jm�M k?R0ð Þe�ikzz0 eiðM�mÞu0 ; (13)

where nnm ¼ ½ð2nþ 1Þðn� mÞ!�1=2½4pðnþ mÞ!��1=2
, M is

the topological charge of the Bessel beam, b is the cone

angle, k? ¼ k sin b; R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ y2
0

p
, and x0, y0, and z0 are

the offset along the x, y, and z directions, respectively. The

axial component of the wave number is kz ¼ k cos b, and the

original azimuthal angle is u0 ¼ tan�1ðy0=x0Þ. Note also

that Eq. (13) obtained here with ASM is equivalent to previ-

ous theoretical expression obtained by Gong et al.17 and

Zhang.18 By inserting Eq. (13) into Eq. (12), the expression

of axial ART is verified equivalent to Eq. (15a) of Ref. 14.

In the simulations represented on Fig. 1, the topological

charge of the CBB is M¼ 1 with b ¼ 60�, the incident fre-

quency is 1 MHz with pressure amplitude 1 MPa, and the

particle radius is a¼ 180 lm. For brevity, the acoustic

parameters of the viscoelastic polyethylene (PE) sphere

immersed in water are same as those used in Ref. 2, as given
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in Table I. The particle is moved off the beam axis [see

the schematic in Fig. 1(a)] along only x direction with

x0 2 ½0; 5k�; y0 ¼ 0 and z0 ¼ 0 where k ¼ 1:5 mm is the

wavelength in water. As observed in Fig. 1(b), the calcu-

lated 3D ART with the ASM [see Eqs. (10)–(12)] agree

exactly with those by the MEM.2,37 No computational error

is expected between the two methods since the two theoreti-

cal expressions can be shown to be equivalent.37 Note that

the partial wave (or scattering) coefficients Anm for a visco-

elastic sphere of both results are obtained based on the

Kelvin-Voigt linear viscoelastic model38 with the explicit

expressions given in the Appendix of Ref. 2. Further confir-

mation of these formula is under way by comparing directly

the analytical expressions of the two formulas,37 i.e., the

relation between the BSC can turn the ART formulas in

Eqs. (10)–(12) into those by Silva et al.15 if index issues are

improved. Note that since the particle is moved off axis

along the x direction, the lateral ART Tx always vanishes

because of the symmetry. For the normal incidence (x0 ¼ 0

and y0¼ 0), only the axial ART due to acoustic absorption

exists.1,11

IV. STUDY OF THE ART EXERTED BY A ONE-SIDED
SPHERICAL VORTEX ON A VISCOELASTIC SPHERE

To illustrate the potential of the present approach, we

now apply our method to a case which cannot be treated

analytically: the torque exerted on a 5 lm viscoelastic poly-

styrene (PS) particle insonified by a 40 MHz one-sided

spherical vortex synthesized in an inviscid fluid by plane

active spiraling transducers [Fig. 2(a)] similar to the one

used by Baudoin et al.25,27 to trap microparticles and cells.

The transducers are made of two active spiraling electrodes

of inverse polarity whose equations are given in Ref. 25,

exciting a piezoelectric wafer. In these simulations, the

maximum radius of the transducer is Rt ¼ 2.1 mm and the

transducer is designed to obtain a focal plane located at

z¼ 1 mm from the source plane, leading to a large aperture

angle 65� to obtain axial and hence 3D trapping capabilities.

The acoustic pressure in the source plane piðx; y; 0Þ is

approximated as having the same geometrical distribution as

the active spiral electrodes as shown in Fig. 2(a). That is to

say, for the red electrode, the pressure has amplitude 1 MPa

and phase 0, written as piðx; y; 0Þ ¼ 1 MPa, while for the

blue one, the pressure has amplitude 1 MPa and phase p,

written as piðx; y; 0Þ ¼ � 1 MPa. The rest of the domain has

a pressure equal to piðx; y; 0Þ ¼ 0. In the following computa-

tions, we take the physical domain as 3Rt � 3Rt in (x, y)

plane and the fine mesh number 3000 with the physical

space interval Rt=1000 to assure the convergence. Based on

the 2D fast Fourier transform, the angular spectrum is

FIG. 1. (Color online) The three projections of the ART (Tx, Ty, Tz) exerted on an off-axis viscoelastic sphere by a cylindrical Bessel vortex on a visco-

elastic PE solid sphere are calculated by the present ASM [Eqs. (10)–(12)] and compared to results obtained with the MEM (Gong et al.) (Ref. 2). (a)

Scheme of the simulated configuration. The topological order of the CBB is M¼ 1 and the cone angle b ¼ 60� (see Ref. 36 for more details about

acoustical vortices). The particle is moved away from the beam center along x direction of a distance x0 2 ½0; 5k�, with k the wavelength in the

fluid. There is no offset along the y direction (y0 ¼ 0) and since cylindrical Bessel are invariant along z, the position along this axis does not matter.

(b) Figure comparing the values of the three projections of the ART obtained with ASM and MEM, as a function of the particle dimensionless

offset x0=k.

TABLE I. Acoustic parameters of particle materials and water. The absorption

values for the PE were derived from ultrasonic measurements made by

Hartmann and Jarsynski (Ref. 39) with the longitudinal and shear absorption

per wavelength 0.4 and 1.2 dB, respectively, while for the PS by Takagi et al.
(Ref. 40) with the longitudinal and shear absorption coefficients 23 and

108 Np/m at frequency f¼ 5 MHz. Note that 1 Np¼ 8.6859 dB. The normal-

ized longitudinal (cp) and shear (cs) absorption coefficients are normalized by

the corresponding wave number (kp;s) which are calculated by the longitudinal

(cp) and shear (cs) velocities with x ¼ kp;scp;s.

Material Density (kg/m3) cp (m/s) cs (m/s) cp cs

PE 957 2430 950 0.0074 0.022

PS 1050 2350 1100 0.0017 0.0038

Water 1000 1500 … … …
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directly computed with the wave number interval 2p=ð3RtÞ
and the range 2000p=Rt � 2000p=Rt in (kx, ky) plane. The

torque is computed with the formula provided in this paper

while the force is computed using formulas by Sapozhnikov

and Bailey.21 The field synthesized by these transducers

computed with ASM is illustrated in Fig. 2(b) for the (x, z)

plane and Fig. 2(c) for the (x, y) plane. The lateral force

applied in the focal plane on the particle is shown as arrows

on Fig. 2(c) (left). This figure shows that the particle trap

position is a bit out-centered, which can be simply explained

by the spiral finiteness. The axial force and torque is then

calculated on the lateral trapping axis and represented in

Fig. 2(d). This figure shows that spiraling transducers

exhibit 3D trapping capabilities providing that the aperture

is sufficient (here we chose an aperture of 65�). Note that

the 3D trapping of 190–390 lm PS particles in the MHz

range with a focused vortex was demonstrated first theoreti-

cally and then experimentally with a complex array of trans-

ducers in Refs. 41 and 42. It also shows that the axial torque

is maximum for a value slightly below the focal plane.

V. CONCLUSIONS AND DISCUSSIONS

In summary, some compact angular spectrum based 3D

ART formulas are derived for a single particle immersed in

an ideal fluid with no limitation to the particle size, particle

shape, and beam shape structure. The arbitrary acoustic field

is taken as the superposition of plane waves, hence can be

expanded based on the ASM,21 which is quite practical for

finite-aperture real sources. The ART on non-spherical

shapes (e.g., spheroid and finite cylinder) can be calculated

once the partial wave coefficients Am
n are obtained with

proper methods, for example, the T-matrix method.2,30–35

The present theory is still practicable for an absorbing

sphere in a viscous fluid if the absorption processes in the

particle and viscous layer is accounted in the expression of

scattering coefficients.1,5,11,14 In addition, the formulas can

be used for multiple objects1,43,44 that are all located inside

the chosen far-field spherical shape so that the divergence

theorem still holds for the derivation. The ART of particle

in experimental sources can be evaluated by the measured

acoustic field in the transverse plane as similar to the simu-

lation of acoustic radiation force.19 By combining with the

3D acoustic radiation forces,21 we can predict the dynamic

motions of particles in real acoustic field with six degrees of

freedom, i.e., three for translocations and three for spinning

motions. It is noteworthy that for a particle located off the

axis of a vortex beam, both 3D radiation forces and torques

are applied on the particle so that the particle could rotate

around the beam axis (by the azimuthal component of radia-

tion force) and its own center of mass (by the radiation

FIG. 2. (Color online) (a) Schematic of a one-sided focused vortex synthesized (left) with a set of two spiraling electrodes of inverse polarity (right, red and

blue). The focal plane is designed at z¼ 1 mm with the source plane at z¼ 0. The aperture of the spiral electrodes is Rt ¼ 2.1 mm. (b) Acoustic pressure mag-

nitude square in the (x, z) plane (left) with a zoom near the focal point (right). The lengths along x and z are not scaled. (c) Acoustic pressure magnitude

square and phase in the lateral focus plane (x, y) at z¼ 1 mm. The arrows on the first panel give the lateral force for a viscoelastic PS particle with a ¼ 5 lm

in radius in the focal plane, showing a slightly out-centered lateral trap. (d) The axial radiation force (Fz in Newton) and torque (Tz in N m) versus z along

the lateral trap axis. The particle is trapped in 3D [see the first panel of (c) for lateral trap and the blue line for axial trap] and spins around its mass center

located on the beam axis. The lengths are in the unit of mm in (b)–(d).
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torque). Since a particle in a vortex beam could be ejected

out of the trap,45 this work can be used for theoretical guid-

ance on parameters selection of acoustic sources for experi-

mental designs, which can slow down the spinning motions

by decreasing the ART, and meanwhile, keep the trapping

by the acoustic radiation force. In addition, this work has the

potential to dynamically control the rotation and translation

of particles in manipulation devices in and beyond the long-

wavelength regime.46,47
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APPENDIX A: LADDER OPERATORS

The far-field asymptotic expressions of the spherical Bessel

function and Hankel function of the first kind are, respectively,

jnðkrÞ ’ i�ðnþ1Þeikr=2kr þ inþ1e�ikr=2kr; (A1a)

hð1Þn ðkrÞ ’ i�ðnþ1Þeikr=kr; (A1b)

and the recursion relation of the spherical Bessel function is

j0nðkrÞ ¼ ðn=krÞjnðkrÞ � jnþ1ðkrÞ; (A2)

where the symbol 0 means the derivative with respect to kr.

The ladder operators L6 has the relationship with the lateral

components of the angular momentum operator Lx;y:

L6 ¼ Lx 6 iLy.48 The recursion relations of ladder operators

L6 (or axial component of angular momentum operator Lz)

and normalized spherical harmonics are49

LþYm
n ¼ b�m

n Ymþ1
n ; (A3a)

L�Ym
n ¼ bm

n Ym�1
n ; (A3b)

LzY
m
n ¼ mYm

n : (A3c)

Finally, the orthogonality relation of the normalized

spherical harmonics is48

ð2p

0

du
ðp

0

sin hdhYm�
n ðh;uÞYm0

n0 ðh;uÞ ¼ dnn0dmm0 : (A4)

APPENDIX B: DERIVATION OF 3D ART IN TERMS
OF HNM

1. Detailed derivation of Tx

Based on the ART formulas of Eq. (9), the expression

of x-component of ART is

Tx ¼ �
1

2p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
1þ Am�

n

� �(

�Am0

n0 H
�
nmHn0m0

ð ð
S0

Ym�

n LxYm0

n0 sin hdhdu

	
: (B1)

Substitute Eqs. (A3a) and (A3b) into Eq. (B1) with the

relation Lx ¼ ðLþ þ L�Þ=2,

Tx ¼ �
1

4p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
1þ Am�

n

� �(

�Am0

n0 H
�
nmHn0m0

ð ð
S0

Ym�

n ðLþ þ L�ÞYm0

n0 sin hdhdu

	

¼ � 1

4p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0�1

m0¼�n0
1þ Am�

n

� �(

� Am0

n0 H
�
nmHn0m0

ð ð
S0

Ym�

n b�m0

n0 Ym0þ1
n0 sin hdhdu

þ
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0þ1

1þ Am�

n

� �

�Am0

n0 H
�
nmHn0m0

ð ð
S0

Ym�

n bm0

n0 Y
m0�1
n0 sin hdhdu

	
: (B2)

Note that the regimes of ðn0;m0Þ in the summation symbol is

based on the definition of the normalized spherical harmon-

ics (i.e., Ym0

n0 and Ym061
n0 ), which are the intersection part and

listed in Table II.

Using the orthogonality relationship in Eq. (A4), the

expression of Tx is

Tx ¼ �
1

4p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0�1

m0¼�n0
1þ Am�

n

� �(

� Am0

n0 H
�
nmHn0m0b

�m0

n0 dnn0dm;m0þ1

þ
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0þ1

1þ Am�
n

� �

� Am0

n0 H
�
nmHn0m0b

m0

n0 dnn0dm;m0�1

	

¼ � 1

4p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�nþ1

1þ Am�

n

� �(

� Am�1
n H�nmHn;m�1b�mþ1

n þ
X1
n¼0

Xn�1

m¼�n

1þ Am�
n

� �

� Amþ1
n H�nmHn;mþ1bmþ1

n

	
: (B3)

Here, we use a re-index for the second part of Eq. (B3) by

using a variable substitution q ¼ mþ 1 2 ½�nþ 1; n�, and

note that b�mþ1
n ¼ bm

n ,

TABLE II. Regime of ðn0;m0Þ in normalized spherical harmonics for deri-

vation of Fx and Fy. Note that based on the definition in Eq. (6), we have

n0 2 ½0;1� and m0 2 ½�n0; n0�.

n0 m0 Intersection

Ym0þ1
n0 n0 2 ½0;1� m0 2 ½�n0 � 1; n0 � 1� n0 2 ½0;1�; m0 2 ½�n0; n0 � 1�

Ym0�1
n0 n0 2 ½0;1� m0 2 ½�n0 þ 1; n0 þ 1� n0 2 ½0;1�; m0 2 ½�n0 þ 1; n0�
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Tx ¼ �
1

4p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�nþ1

1þ Am�
n

� �
Am�1

n H�nmHn;m�1bm
nþ
X1
n¼0

Xn

q¼�nþ1

1þ Aq�1�
n

� �
Aq

nH�n;q�1Hn;qbq
n

( )

¼ � 1

4p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�nþ1

1þ Am�
n

� �
Am�1

n H�nmHn;m�1bm
nþ
X1
n¼0

Xn

m¼�nþ1

1þ Am�1�
n

� �
Am

n H�n;m�1Hn;mbm
n

( )

¼ � 1

4p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�nþ1

bm
n Am�1

n þ 2Am�1
n Am�

n þ Am�
n

� �
H�nmHn;m�1

( )
; (B4)

which is Eq. (10) in Sec. II. Note that Re{X} ¼ Re fX�g with X an arbitrary complex number.

2. Derivation of Ty

The expression of y-component of ART is

Ty ¼ �
1

2p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
1þ Am�

n

� �
Am0

n0 H
�
nmHn0m0

ð ð
S0

Ym�

n LyYm0

n0 sin hdhdu

( )
: (B5)

As similar as the derivation for Tx, the final expression of Ty in terms of Hnm can be obtained by using Eqs. (A3a) and

(A3b) into Eq. (B5) and Ly ¼ ðLþ � L�Þ=2i instead of Lx, as given in Eq. (11) and omitted here for brevity.

3. Detailed derivation of Tz

The expression of z-component of ART is

Tz ¼ �
1

2p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
1þ Am�

n

� �
Am0

n0 H
�
nmHn0m0

ð ð
S0

Ym�

n LzY
m0

n0 sin hdhdu

( )
: (B6)

Inserting Eq. (A3c) into Eq. (B6) and using the orthogonality relation in Eq. (A4), the final expression of Tz in terms of

Hnm can be derived as

Tz ¼ �
1

2p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
1þ Am�

n

� �
Am0

n0 H
�
nmHn0m0

ð ð
S0

Ym�

n m0Ym0

n0 sin hdhdu

( )

¼ � 1

2p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
1þ Am�

n

� �
Am0

n0 H
�
nmHn0m0m

0dnn0dmm0

( )

¼ � 1

2p2q0k3c2
0

Re
X1
n¼0

Xn

m¼�n

m 1þ Am�

n

� �
Am

n H�nmHnm

( )
; (B7)

which is Eq. (12) in Sec. II.

APPENDIX C: THEORETICAL DERIVATION OF ON-
AND OFF-AXIS CBB BASED ON ASM

1. Hnm for an on-axis CBB

The Hnm coefficients for an on axis particle insonified by a

CBB were calculated analytically with the ASM by Sapozhnikov

and Bailey.21 However, they only provided the result in the

paper. Since the calculation is not straightforward, we give here

the main elements of the demonstration before extending it to the

case of off-axis CBB. The expression of a CBB is given by

piðx; y; zÞ ¼ p0eikkzJM k?Rð ÞeiMu; (C1)

with kk ¼ k cos b; k? ¼ k sin b; k ¼ x=co the wavenumber,

b the cone angle, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
the radius in cylindrical

coordinates, and u ¼ arctanðy=xÞ in R3 space and ðO; ezÞ
is the central axis of the Bessel beam. In Cartesian coordi-

nates, the angular spectrum in a plane (x,y) of arbitrary

altitude z orthogonal to the Bessel beam central axis can

be written as

Sðkx; kyÞ ¼
ðþ1

x¼�1

ðþ1
y¼�1

dxdy piðx; y; zÞe�ik:r; (C2)

with k ¼ kx ex þ ky ey þ kz ez; kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x � k2
y

q
, and the

expression of the position vector is r ¼ x ex þ y ey þ z ez.

This expression gives Eq. (4) when z¼ 0 (a condition which

can always be fulfilled with a simple change of frame of

reference).

In cylindrical coordinates, the angular spectrum can be

recast as

J. Acoust. Soc. Am. 148 (5), November 2020 Zhixiong Gong and Michael Baudoin 3137

https://doi.org/10.1121/10.0002491

https://doi.org/10.1121/10.0002491


SðkR;ukÞ ¼
ð2p

u¼0

ðþ1
R¼0

RdRdupiðR;u; zÞe�ik:r; (C3)

with k ¼ kR eRðukÞ þ kz ez; kR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx

2 þ ky
2

p
; uk

¼ arctanðky=kxÞ, and the position vector r ¼ R erðuÞ þ z ez.

Inserting the expression of the CBB [Eq. (C1)] in Eq.

(C3) and considering the angular spectrum in the plane z¼ 0

gives

SðkR;ukÞ ¼ p0

ð2p

u¼0

ðþ1
R¼0

RdRduJM k?Rð Þ

� e
i Mu�kRR cos uk�uð Þ½ �: (C4)

From the integral definition of a cylindrical Bessel function,

JaðxÞ ¼ ð1=2pÞ
Ð p
�p eiðas�x sin sÞds and the variable substitu-

tion p=2� / ¼ uk � u (so that d/ ¼ du and cos ðp=2� /Þ
¼ sin /), the integral of the exponential function over du
becomesð2p

0

due
i Mu�kRR cos uk�uð Þ½ � ¼ 2pi�MJM kRRð ÞeiMuk : (C5)

Inserting Eq. (C5) into Eq. (C4) and combining the results

with the orthogonality relation of cylindrical Bessel func-

tions
Ð1

0
xJaðuxÞJaðvxÞdx ¼ dðu� vÞ=u gives

SðkR;ukÞ ¼ p0

ðþ1
0

RdRJM k?Rð Þ 2pi�MJM kRRð ÞeiMuk


 �
¼ 2pp0i�M dðk? � kRÞ

k?
eiMuk ; (C6)

which is Eq. (62) in Ref. 21. Note that the dirac function is

6¼ 0 only when kR ¼ k?. Hence, following the definition of

Hnm in terms of Sðkx; kyÞ [Eq. (7)], the integral over the disk

domain (k2
x þ k2

y � k2, i.e., k2
R < k2) degenerates into the

integral over a circle corresponding to kR ¼ k?, which in

cylindrical coordinates becomes

Hnm¼
ð2p

0

k?duk 2pp0i�M 1

k?
eiMuk

� 

Ym�

n hk;ukð Þ

¼2p3=2p0i�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ1Þðn�mÞ!
ðnþmÞ!

s
Pm

n ðcosbÞdMm; (C7)

with Ym
n
�¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð2nþ1Þ=4p�½ðn�mÞ!=ðnþmÞ!�

p
Pm

n ðcoshkÞe�imuk

the conjugates of the spherical harmonics andÐ 2p
0

eiðM�mÞuk duk ¼ 2pdMm. This formula agrees with the

expression given in Ref. 21. Note that in Fourier space, we

have dkxdky ¼ RdkRduk, and cos hk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

R=k2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

?=k2
p

¼ cos b.

2. Hnm for an off-axis CBB

Now let us consider two frames of reference, R0 ¼ ðO0;
ðex; ey; ezÞÞ andR ¼ ðO; ðex; ey; ezÞÞ, with the point O0 located

on the central axis of the Bessel beam and the point O corre-

sponding to the “off-axis” center of the particle, see Fig. 3.

Hence the position vectors in the two reference frames are such

that: r ¼ r0 þ r0, with r0 ¼ OO0 ¼ x0 ex þ y0 ey þ z0 ez

¼ Roer ðu0Þ þ z0 ez. The incident field inR0 is given by

piðx0; y0; z0Þ ¼ p0eikkz
0
JM k?R0ð ÞeiMu0 ; (C8)

where ðR0;u0; z0Þ are the cylindrical coordinates of r0 inR0.
The angular spectrum S0 and S in the planes

ðO0; ðx0; y0Þ) and ðO; ðex; eyÞÞ are respectively given by

S0ðkx; kyÞ ¼
ðþ1

x¼�1

ðþ1
y¼�1

dx0dy0piðx0; y0; z0Þe�ik:r0 ; (C9)

Sðkx;kyÞ¼
ðþ1

x¼�1

ðþ1
y¼�1

dxdypiðx�x0;y�y0;z�z0Þe�ik:r:

(C10)

Since (i) the integral over x and y are infinite (and thus not

modified by a translation), (ii) piðx; y; z� z0Þ ¼ e�ikkz0

piðx; y; zÞ, (iii) k:r ¼ k:r0 þ k:r0 ¼ k:r0 þ kR cosðuk � u0Þ,
we see directly that,

Sðkx; kyÞ ¼ S0ðkx; kyÞe�ikkz0�ikR cosðuk�u0Þ:

The on-axis value of the angular spectrum S0 was calculated

in the previous section [Eq. (C6)], leading to

SðkR;ukÞ¼ 2pi�Mp0e�ikkz0 e
i Muk�kRR0 cos uk�u0ð Þ½ �

�dðk?� kRÞ
k?

: (C11)

We can now proceed very similarly to the on-axis case

to compute the Hnm coefficients and turn the integral over a

disk into an integral over the circle kR ¼ k?:

Hnm ¼
ð2p

0

k?duk 2pi�Mp0e�ikkz0 e
i Muk�k?R0 cos uk�u0ð Þ½ �

h

� 1

k?



Ym�

n hk;ukð Þ

¼ 2pi�Mp0e�ikkz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

4p
ðn� mÞ!
ðnþ mÞ!

s
Pm

n cos hkð Þ

�
ð2p

uk¼0

duk ei ðM�mÞuk�k?R0 cos uk�u0ð Þ½ �

 �

: (C12)

FIG. 3. (Color online) The global Oðx; y; zÞ with its origin (0, 0, 0) at the

particle center and local coordinates O0ðx0; y0; z0Þ with its origin ðx0; y0; z0Þ
at the beam center.
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Using a variable substitution p=2� / ¼ u0 � uk (so

that duk ¼ d/) to evidence the integral definition of the

Bessel function [similar to what was done to obtain

Eq. (C5)], Eq. (C12) turns out to be

Hnm ¼ 2p3=2i�mp0e�ikkz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn� mÞ!
ðnþ mÞ!

s

� Pm
n ðcos bÞeiðM�mÞu0 Jm�M k?R0ð Þ; (C13)

with cos hk ¼ cos b, and JM�mðk?R0Þ ¼ ð�1Þm�MJm�M

ðk?R0Þ for an integer ðM � mÞ 2 Z. When the particle is

located on the axis of a CBB [i.e., ðx0; y0; z0Þ ¼ ð0; 0; 0Þ so

that (R0;u0; z0Þ ¼ ð0; 0; 0Þ�, Eq. (C13) degenerates into Eq.

(C7). Note that Jm�Mð0Þ ¼ dmM.

For the CBB used in Sec. III, the field is defined by the

acoustic potential (with time harmonics omitted) as17

Uiðx; y; zÞ ¼ U0iMeikkðz�z0ÞJM k?R0ð ÞeiMu0 : (C14)

Note that the relation between acoustic potential and pres-

sure is p ¼ ixq0U, so that there is a coefficient difference

iMþ1 between Eqs. (13) and (C13).
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