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It is well known that one key difficulty of solving the boundary-value problems governed by the
Helmholtz equation using standard finite element method (FEM) is the loss of accuracy with increasing
wave number due to the ‘‘numerical dispersion error”. In order to overcome this issue, the hybrid
smoothed finite element method (HS-FEM) using linear triangular elements is presented to analyze
two dimensional radiation problems. An important feature of HS-FEM is the introduction of a scale factor
a 2 [0, 1] which is designed to establish the area-weighted strain field that contains contributions from
both the standard FEM and the node-based smoothed finite element method (NS-FEM). The gradient
smoothing technique used in the HS-FEM guarantees the numerical model can provide a close-to-
exact stiffness to the continuous system and hence significantly reduces the numerical dispersion error.
To solve the acoustic radiation problems in an infinite fluid domain, the HS-FEM is combined with the
Dirichlet-to-Neumann (DtN) boundary condition to give a HS-FEM-DtN model for two dimensional
acoustic radiation problems. Several numerical examples are given and it is found that HS-FEM can pro-
vide more accurate results than FEM with the same mesh.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

During the past few decades, a variety of numerical methods
have been introduced to solve acoustic problems governed by the
Helmholtz equation. The standard finite element method (FEM)
and boundary element method (BEM) are the most popular and
powerful numerical methods for coping with these acoustic prob-
lems. There are a great deal of relevant research work can be found
in the published literatures [1–5]. However, the numerical
approaches for handling the acoustic problems still remain two
major challenges. In general, the acoustic problems can be classi-
fied into interior and exterior acoustic problems. The first chal-
lenge is how to treat exterior acoustic problems in an infinite
fluid domain effectively. Initially, the FEM was applied to acoustics
with the aim of solving the interior problems in finite domains. For
exterior problems, including acoustic radiation and scattering, the
well-known Sommerfeld radiation condition should be obeyed so
that there is no spurious wave reflecting from the far field. Another
challenge is the so-called ‘‘numerical dispersion” errors [6–8]. In
general, the numerical methods can provide appropriate solutions
in the low frequency range (small wave number). While the accu-
racy of the numerical solutions will deteriorate rapidly as the wave
number is increased. A simple way of improving the accuracy of
numerical solutions is to employ high quality meshes. However,
refining the mesh may become prohibitively expensive. This diffi-
culty is especially important when solving large-scale 3D acoustic
problems, and hence it is not always a viable option.

Actually, standard FEM is not appropriate for solving exterior
acoustic problems in infinite domains. To remedy this difficulty,
a series of numerical treatments including absorbing boundary
conditions [9–12], Dirichlet to Neumann (DtN) boundary condi-
tions [13–17] and perfectly matched layer (PML) [18–20] have
been introduced to deal with exterior acoustic problems in recent
years. One outstanding numerical technique of them is the DtN
boundary condition devised by Givoli and Keller. This boundary
condition is an exact non-reflecting boundary condition (there
are no spurious reflecting waves from far field) and it relates the
‘‘Dirichlet datum” to the ‘‘Neumann datum” with the help of an
integral operator M. Even though it is non-local, it still possesses
high computational efficiency and can obtain much more accurate
results than those obtained from various approximate local condi-
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Fig. 1. The acoustic radiation problem in an infinite domain.
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tions. Therefore, many researchers have applied the DtN boundary
conditions to cope with all kinds of exterior acoustic problems and
other problems in large finite domains.

Grote and Kirsch employed the DtN boundary condition to ana-
lyze the time harmonic multiple scattering problems where the
computational regions contained several disjoint components
[15]. Due to each sub-scatter was enclosed by a separate artificial
boundary, the computational efficiency was greatly improved.
Acosta and Villamizar proposed a hybrid method employing the
DtN boundary condition along with the finite difference method
in curvilinear coordinates for the analysis of multiple scattering
problems from obstacle of arbitrary shape [21]. In this work, a
heterogenous medium with variable physical properties in the
vicinity of the obstacles was considered. As an extension of this
work, the multiple DtN boundary condition coupling with the
method of images was developed for multiple scattering problems
in the half-plane [22]. Following Keller, Giboli and Grote’s work, a
new exact non-reflecting boundary condition on general domains
was formulated by Nicholls and Nigam [23]. An important feature
of this work was the artificial boundary need not be quite specific,
such as a circle in two dimensions or a sphere in three dimensions.
The shape of the artificial boundary mainly depended on the shape
of the scatters. Numerical results showed that this method not only
can obtain accurate solutions, but also enable significant computa-
tional savings.

For the purpose of reducing the numerical dispersion error in
acoustic problems, various numerical techniques based on the
standard finite element method have been developed to tackle this
issue, such as the Galerkin/least-squares finite element method
(GLS) [24], the quasi-stabilized finite element method (QSFEM)
[8] and the residual-free finite element method (RFEM) [25]. How-
ever, all of the above methods can not reduce the numerical disper-
sion error effectively.

In addition to the standard finite element method and the
extended finite element method, the meshfree methods have been
also introduced to solve the acoustic problems. Belytschko et al.
proposed the element-free Galerkin method (EFGM) to tackle the
numerical dispersion in acoustic problems [26]. Bouillard and
Suleaub [27] found that the EFGM was effective to reduce the
numerical dispersion error significantly compared to the FEM even
though the EFGM also suffered from the dispersion and pollution
effect. However, in order to control the numerical dispersion error,
delicate background cells and a large number of quadrature points
were needed for the global numerical integration, leading to pro-
hibitive computational demands. The discontinuous finite element
formulation has also been applied for acoustic problems by Alvarez
et al. and significant improvement were achieved on accuracy, but
higher cost in computation as well as EFGM [28].

As mentioned in Ref. [29], the approximate discrete model is
the main reason to cause dispersion error. The stiffness of the dis-
cretized model obtained from the standard FEM always behaves
stiffer than the original model, leading to the so-called numerical
dispersion error. So producing a properly ‘‘softened” stiffness for
the discrete model is much more essential to control the numerical
error.

In the advanced finite element method field, a series of
smoothed finite element (S-FEM), named as node-based S-FEM
(NS-FEM), edge-based S-FEM (ES-FEM) and face-based S-FEM
(FS-FEM) was proposed by Liu’s group [30–33]. Due to the gradient
smoothing technique used in the S-FEM, these S-FEM models can
provide proper softening effect to the ‘‘overly-stiff” FEM model,
the S-FEM shows great efficiency and high convergence rates in
solving linear elastic solid mechanics. In recent years, He et al. have
introduced the S-FEM to solve the acoustic problems and coupled
structural-acoustic problems [34–39]. The linear triangular and
tetrahedron elements are used to discretize the 2D and 3D fluid
domains. Numerical results demonstrated that the S-FEM is more
effective to control the numerical error than the standard FEM.

The present work is inspired by Li and He’s work [39] on hybrid
smoothed finite element method (HS-FEM) for acoustic problems.
The essential idea of the HS-FEM is to introduce a scale factor
a 2 [0, 1] to establish a continuous function of strain energy that
contains contributions from both the standard FEM and the
node-based smoothed finite element method (NS-FEM). This novel
HS-FEM makes the best use of the ‘‘overly-stiff” property of the
standard FEM and the ‘‘overly-soft” property of the NS-FEM. By
regulating the parameter a, the HS-FEM can obtain a ‘‘close-to-
exact” stiffness of the discretized model and then can provide
much more accurate solutions than the standard FEM. While the
above mentioned work mainly focus on interior acoustic problems.
Our focus in this work is to address the two dimensional radiation
problems in unbounded domains which are very important in var-
ious scientific fields such as linear and nonlinear wave mechanics.
In this paper, the HS-FEM is combined with the DtN boundary con-
dition to give a HS-FEM-DtN model for the exterior acoustic prob-
lems. Due to the good performance of the HS-FEM in interior
acoustic problems, it is expected that the HS-FEM will solve the
exterior acoustic problems with very accurate solutions.

This paper is organized as follows: in Section 2 the acoustic
radiation problems in infinite domain is reviewed. Section 3 briefly
describes the Dirichlet to Neumann boundary condition for finite
element schemes. Section 4 contains the detailed formulation of
the hybrid smoothed finite element method. Section 5 outlines
the numerical error estimates in acoustic problems. In Section 6,
several numerical examples are studied in details. Final conclu-
sions from the numerical results are drawn in Section 7.

2. The acoustic radiation problems in infinite domain

As shown in Fig. 1, an acoustic radiation problem in infinite
domain R bounded internally by the surfaceC of an radiator is con-
sidered. We assume that the boundary C can be decomposed into
two portions Cp and Cv, where C = Cp [ Cv and Cp \ Cv =£. Cp

and Cv denote the Dirichlet boundary condition and the Neumann
boundary condition. The two boundary conditions can be
described as follows:

p ¼ pD on Cp ð1Þ

rp � n ¼ �jqxvn on Cv ð2Þ
where p denotes the spatial part of the acoustic pressure or velocity
potential, q, x and vn represent the density of medium, the angular
frequency and the normal velocity on the boundary, respectively.

The exterior boundary-value problem can be described in the
following equations:

Dpþ k2pþ f ¼ 0 in R ð3Þ
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p ¼ g on Cg ð4Þ

ru � n ¼ h on Ch ð5Þ
Here, D and k represent the Laplace operator and wave number,

respectively, f, g and h are given functions.
For acoustic radiation problems in unbounded domains, the

Sommerfeld radiation condition has to be obeyed and the radiation
condition requires that energy flux be positive at infinity, this
property ensures that the boundary-value problem has unique
solution.

The Sommerfeld radiation condition can be describe as follows:

lim
x!1

r
ðd�1Þ

2
@p
@r

� ikp
� �

¼ 0 ð6Þ

where d is the spatial dimension.

3. The formulation of FEM-DtN method

The aim of this paper is to solve two dimensional acoustic radi-
ation problems in infinite domain. In order to solve the exterior
Helmholtz equation using numerical method, as shown in Fig. 2,
the infinite domain is usually truncated by an artificial boundary
B which is generally a circle or sphere of radius R. As a result, a
finite computational domain X is obtained and the original prob-
lem is equivalent to two sub-problems. They are called sub-
problem O and sub-problem I.

Sub-problem O in the unbounded domain is the radiation prob-
lem of a circle and it is governed by Eqs. (3)–(6). In two dimen-
sions, according to Keller and Givoli [13], the exact solution of
this problem can be expressed as:

pðr; hÞ ¼ 1
p
X1
n¼0

0
Z 2p

0

Hð1Þ
n ðkrÞ

Hð1Þ
n ðkRÞ cosnðh� h0ÞpðR; h0Þdh0 ð7Þ

where p(r, h) denotes the unknown value of the acoustic pressure
on the inner boundary. The prime after the sum indicates that a fac-
tor of 1/2 multiples the term with n = 0. Hð1Þ

n represents the Hankel
function of the first kind.

Sub-problem I in the bounded domain is the radiation problem
of an arbitrary radiator into finite domain the outer of which is a
circle. The surface of the radiator is the inner boundary of this
problem. As mentioned above, the inner boundary can be divided
into two portions, Cp and Cv. The Dirichlet boundary condition
and Neumann boundary condition are imposed on Cp and Cv,
respectively.

The computational domain of sub-problem I is finite and it can
be easily solved by the standard finite element method. The gov-
erning equation of this problem is given by Eqs. (1)–(3) and a
defined boundary condition on the artificial boundary B. the
weighted residual equation can be obtained by multiplying Eq.
Fig. 2. The infinite domain is usually truncated by an artificial boundary B yielding
a finite computational domain X.
(3) with a test function w. Then integrating over the entire domain
and using Green’s theorem, the weak form of this problem can be
expressed as:Z
X
ðk2wp�rw � rpÞdXþ

Z
B
w
@p
@n

dB ¼
Z
X
fwdXþ

Z
C
vnwdC ð8Þ

The second term in Eq. (8), which contains the normal deriva-
tive of the acoustic pressure @p

@n on the artificial boundary is not
yet known. Therefore the key to this problem is how to calculate
the integral

R
B w

@p
@n dB .

One important idea is to find a relation that replaces the normal
derivative @p

@n by the value of p on the artificial boundary. As men-
tioned in the previous section, sub-problem O can be solved ana-
lytically, hence the relation between @p

@n and p is possible to obtain
from the solution of this problem. This is the well-known ‘‘Dirich
let-to-Neumann” (DtN) condition which relating the Dirichlet
datum p to the Neumann datum @p

@n on the artificial boundary B.
The DtN boundary condition can be written in the following form:

@p
@n

¼ �Mp on B ð9Þ

where M denotes the DtN operator.
Once the explicit expressions of the DtN operator M is found,

the integration in Eq. (8) can be carried out easily. The normal
derivative of the acoustic pressure @p

@n on the artificial boundary
can be obtained from Eq. (7).

pv ¼ @pðr; hÞ
@n

����r ¼ R ¼ �
X1
n¼0

0
Z 2p

0
mnðh� h0ÞpðR; h0Þdh0 ð10Þ

where

mnðh� h0Þ ¼ � k
p

Hð1Þ
n ðkRÞ

Hð1Þ
n ðkRÞ cosnðh� h0Þ ð11Þ

here mn(h – h0) is the DtN kernels and it can be separated as

mnðh� h0Þ ¼ � k
p

Hð1Þ
n ðkRÞ

Hð1Þ
n ðkRÞ ðcosnh cosnh

0 þ sinnh sinnh0Þ ð12Þ

In this manner, the original problem in infinite domain can be
solved successfully. The detained formulation of this problem by
finite element method is not given in this paper. Interested readers
may refer to Ref. [13]. According to Keller and Givoli, the dis-
cretized system equation for this problem can be obtained in the
following matrix form:

Kp ¼ F ð13Þ
where K is the system stiffness matrix, p is the unknown nodal
acoustic pressure in the computational domain, F is the vector of
nodal force.

The system stiffness matrix K can be written in two parts:

K ¼ Ka þ Kb ð14Þ
where

Ka ¼ ½Ka
IJ � Kb ¼ ½Kb

IJ � ð15Þ

Ka
IJ ¼ aðNI;NJÞ ¼

Z
X
ðrNÞTrNdX� k2

Z
X
NTNdX ð16Þ

Kb
IJ ¼ bðNI;NJÞ ð17Þ

where Ka can be derived from the first term of Eq. (8), Kb contains
the DtN boundary condition and can be derived from the second
term of Eq. (8), I and J denote the node number and NI is the defined
shape function for node I.
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By substituting Eq. (10) into Eq. (8), the stiffness matrix Kb

which contains the DtN operator M can be obtained as:

Kb
IJ ¼ bðNI;NJÞ ¼

Z
B
NIMNJdB

¼ �
X1
j¼0

k
p

Hð1Þ
n ðkrÞ

Hð1Þ
n ðkRÞ

Z
B
NIðxÞFjðxÞdB

� � Z
B
NJðxÞFjðx0ÞdB

� �
ð18Þ

where the simple trigonometric functions Fj(x) and Fj(x0) are deter-
mined by:

FjðxÞ ¼ cosnh sinnh½ � ð19Þ

Fjðx0Þ ¼ cosnh0

sinnh0

� �
ð20Þ

It can be seen from Eq. (14) that the effect of the DtN boundary
condition on the standard finite element method is the inclusion of
the matrix Kb in the system stiffness K. Due to the local support
property of the FEM shape functions, the value of NI equals 1 at
node I and equals 0 at every other node. Besides, NI will vanish out-
side a local patch of elements which share node I. Then the matrix

Kb
IJ is nonzero only if both nodes I and J lie on the boundary B. The

matrix Kb
IJ corresponds to DtN boundary condition, after having cal-

culated Kb
IJ , the exterior acoustic problems in unbounded domain

can be solved by the standard finite element scheme.

4. Formulation of the hybrid smoothed finite element method
(HS-FEM)

4.1. The node-based smoothed finite element method (NS-FEM) for
acoustic problems

In the NS-FEM model, the problem domain X is first divided

into Ne elements with Nn nodes, such that X ¼ PNe
i¼1X

e
i and

Xe
i \Xe

j ¼ £, i– j, as in the standard FEM. The generated elements
can be polygons with arbitrary number of sides and used as back-
ground elements in the NS-FEM. On the top of the background ele-
ment mesh, the problem domain X is further divided into Nn

smoothing domains associated with nodes of the polygonal ele-

ments such that X ¼ PNn
k¼1X

s
k and Xs

i \Xs
j ¼ £, i– j. As shown in

Fig. 3, the node-based smoothing domain for node k is created by
sequentially connecting the mid-edge-point to the centroids of
surrounding n-sided polygonal elements of node k, Ck is the
boundary of the smoothing domain Xk. As a result, the number
Fig. 3. The node-based smoothing domains in 2D problem are created by sequentially
elements.
of the smoothing domain is exactly the same as the number of
nodes. Each n-sided polygonal element will be divided into n
quadrilateral sub-domains and each sub-domain is attached to
the nearest field node. After obtaining the above-mentioned
smoothing domains, the node-based smoothing techniques are
applied over these smoothing domains to create a continuous
strain field for the NS-FEM model. Then the global smoothed
acoustic stiffness matrix of NS-FEM can be obtained as:

KNS-FEM ¼
Z
X
ðrNÞTðrNÞdX ¼

XNn

k¼1

KðkÞ ð21Þ

where N denotes the FEM shape functions and KðkÞ is the smoothed
element stiffness matrix for node k.

The relation of the acoustic particle velocity v and the acoustic
pressure p in ideal fluid can be expressed as:

rpþ jqxv ¼ 0 ð22Þ
where j ¼

ffiffiffiffiffiffiffi
�1

p
, q is the density of medium and x is the angular

frequency.
In this present formulation, the acoustic particle velocity field v,

which is usually linked to the gradient of acoustic pressure, is
smoothed by the node-based smoothing technique and then the
smoothed velocity field can be obtained as:

�vðxkÞ ¼
Z
Xk

vðxkÞ/kðxÞdX ð23Þ

where /k(x) is a given smoothing function that satisfies at least
unity property.Z
Xk

/kðxÞdX ¼ 1 ð24Þ

Using the following constant smoothing function

/kðxÞ ¼
1=Ak x 2 Xk

0 x R Xk

�
ð25Þ

where Ak is the area of the smoothing domain for node k.
Substituting Eqs. (22) and (25) into Eq. (23) and using Green’s

theorem, the smoothed velocity field can be obtained in terms of
acoustic pressure.

�vðxkÞ ¼ 1
Ak

Z
Xk

vðxÞ/kðxÞdX ¼ � 1
jqxAk

Z
Xk

rpdX

¼ � 1
jqxAk

Z
Ck

p � ndC ð26Þ
connecting the mid-edge-point to the centroids of surrounding n-sided polygonal
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Using the FEM shape functions, the smoothed velocity field can
be expressed in the following matrix form:

�vðxkÞ ¼ � 1
jqx

X
i2Mk

BiðxkÞpi ð27Þ

where Mk is total number of nodes in the influence domain of node
k.

BT
i ðxkÞ ¼ �bi1

�bi2

	 
 ð28Þ

�bip ¼ 1
Ak

Z
Ck

NiðxÞnpðxÞdC ð29Þ

Using Gauss integration scheme along the boundary Ck of the
smoothing domain Xk, the numerical integration in Eq. (29) can
be calculated as

�bip ¼ 1
Ak

XNs

q¼1

XNg

r¼1

wrNiðxqrÞnpðxqÞ ð30Þ

where Ns is the number of segments of the boundary Ck, Ng is the
number Gauss points distributed in each segment and wr is the cor-
responding weight coefficients for Gauss point.

Then the smoothed element stiffness matrix for smoothing
domain Xk in Eq. (21) can be obtained as:

KðkÞ ¼
Z
Xk

BTBdX ¼ BTBAk ð31Þ
4.2. The hybrid smoothed finite element method for acoustic problems

As mentioned in the published literature [39], the HS-FEM com-
bines The NS-FEM and the standard FEM by introducing a scaled
factor a 2 [0, 1]. In this paper, the problem domain is discretized
into three-node triangular elements and the linear FEM shape
functions are used. As presented in previous section, in the NS-
FEM model each triangular elements in the problems domain will
be divided into three quadrilateral sub-domains of equal area by
connecting the centroids and mid-edge-point of the triangular ele-
ments and each sub-domain contributes to the element stiffness
matrix of the node attached. While in the HS-FEMmodel, as shown
in Fig. 4, the difference is that the three original quadrilateral sub-
domains at the corners are scaled down by (1 � a2) with the help of
a parameter a. As a result, the three quadrilateral sub-domains
associated with three vertexes have an equal area of (1 � a2)Ae/3
and the remaining Y-shaped sub-domain in the middle of the ele-
ment has an area of a2Ae, where Ae is the area of the triangular
element.
Fig. 4. The HS-FEM-T3 elements are formulated by combining FEM-T3 elements and NS
and FEM is used for the remaining Y-shaped area.
Then the NS-FEM scheme is used to calculate the contributions
to the element stiffness matrix of the three quadrilateral sub-
domains and the standard FEM is used to calculate the contribu-
tions to the element stiffness matrix of the Y-shaped sub-
domain. The global stiffness matrix in HS-FEM can be expressed as:

KHS-FEM ¼
XNn

k¼1

KNS-FEM
k þ

XNe

i¼1

KFEM
i ð32Þ

where

KNS-FEM
k ¼

Z
Xs
k;a

ðBaÞTBadX ð33Þ

KFEM
i ¼

Z
Xe
k;a

BTBdX ¼ BTBa2Ae
i ð34Þ

where Xs
k;a is the smoothing domain consist of three quadrilateral

sub-domains and bounded by Ce
k;a, as shown in Fig. 5. Xe

k;a is the
remaining Y-shaped sub-domain in the original triangular element.

Actually, the smoothed gradient field in the smoothing domain
can be calculated as:

BaðxkÞ ¼ 1
Ak;a

Xnek
j¼1

1
3
ð1� a2ÞAe

jBðxkÞ ¼ 1
As
k

Xnek
j¼1

1
3
Ae
jBðxkÞ ¼ BðxkÞ ð35Þ

where Ak,a is the area of the domain Xs
k;a and As

k is the area defined

in Eq. (31), ne
k is the number of elements around node k and Ae

j is the
whole area of the jth element around node k.

Eq. (35) implies that Ba Eq. (33) can be replaced by BðxkÞ in Eq.
(28), and then Eq. (33) can be rewritten as

KNS-FEM
k ¼ ð1� a2ÞBTBAs

k ð36Þ
Eqs. (34) and (36) show that the procedure of the HS-FEM is

very simple and can be implemented in a straightforward way
with little change to the original NS-FEM and FEM code.

5. Numerical error estimates in acoustic problems

It is well known that the quality of the numerical solution for
acoustic problems using FEM depends on wave numbers k as well
as the average mesh size h of the numerical model. For practical
applications, acoustic finite element users usually follow the so-
called ‘‘the rule of thumb” to obtain acceptable solution. According
to ‘‘the rule of thumb”, a wave-length should always be resolved by
a constant number of elements. However, this rule can only pro-
vide reliable results in the low frequency range. For high frequency
-FEM-T3 elements: the NS-FEM is used for three quadrilateral smoothing domains



Fig. 5. Node-based smoothing domain associated with nodes in the HS-FEM model.
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range, it cannot work well and the numerical error may be
prohibitive.

As the published literature mentioned [40], the numerical dis-
cretization error in the H1-semi-norm can be expressed as:

jpe � phj2 ¼
Z
X
ð~ve � ~vhÞTðve � vhÞdX ð37Þ

where ~v is the complex conjugate of the velocity, the superscript e
denotes the exact solutions and h denotes the numerical solutions
obtained from numerical methods including the present HS-FEM
and standard FEM.

Ihlenburg and Babuška [40] proved that the relative error of the
hp-version FEM solution for acoustic problem in H1-seminorm is
bounded by

g ¼ jpe � phj1
jpej1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
X ð~ve � ~vhÞTðve � vhÞdXR

X ð~ve � veÞ2dX

vuut

6 C1
kh
p

� �p

þ C2k
kh
p

� �2p

ð38Þ

where p is the degree of polynomial approximation used in the
numerical methods.

Ihlenburg and Babuška [40] proved that the numerical error can
be split into two terms: the first term in Eq. (38) denotes the inter-
polation error. This error can be controlled by keeping kh constant.
The second term denotes the numerical pollution error caused not
only by phase shift but also the error on the amplitude of the wave.

For linear interpolation (p = 1) discussed in this paper, the pol-
lution error term can be neglected if kh < 1, so the relative error is
mainly caused by the interpolation error term for small wave num-
Fig. 6a. Schematic description of the oscillating cyl
bers. While for large wave numbers, the pollution error term will
dominates the relative error, because it will increase linearly with
the increase of wave number k.

In this present paper, the relative error of the numerical solu-
tion obtained from the standard FEM and HS-FEMwill be discussed
in details. The numerical results demonstrate that the numerical
error will reduce significantly due to the gradient smoothing oper-
ation on the numerical model and the HS-FEM can obtain more
accurate results than the standard FEM.

6. Numerical results

In this section, a number of numerical examples are conducted
to verify the improved accuracy of the present HS-FEM. For acous-
tic problems, we have known that the wave number solution of
FEM is always smaller than the exact solution due to the ‘‘overly-
stiff” property of the model and the NS-FEM solution is always lar-
ger than the exact one due to the ‘‘overly-soft” property, so the
value of the important parameter a, which controls the contribu-
tion proportions of the FEM and NS-FEM to the present HS-FEM
model, is very critical in improving the accuracy of the numerical
results. The optimal a, which can provide nearly exact stiffness of
the model, not only depends on the wave number but also on
the mesh size and the wave propagation angle in two dimensional
acoustic problems, and therefore a universally workable a is not
easy to find. Interested readers may refer to the published work
[41] on how to determine the optimal value of a in 1D and 2D
acoustic problems. The aim of this paper is to solve two dimen-
sional acoustic radiation problems with more accurate results
using the HS-FEM and extending the application of the HS-FEM
from interior acoustic problems in bounded domains to exterior
acoustic problems in unbounded domains. For simplicity, the value
of the parameter a is chosen to be 0.8 for all numerical examples
except for extra instruction in this paper. This value of a is found
preferable by numerical ‘‘experiments” on different meshes. This
a chosen will not be optimal and the solution may not be very close
to the exact one, but the accuracy of the results is usually much
better than the FEM using the same mesh.

6.1. Acoustic radiation from an infinite oscillating cylinder

6.1.1. Accuracy study
An infinite rigid oscillating cylinder of order n is considered in

this section, Fig. 6a shows the geometry of the cylinder. The cylin-
der of radius a is located in the unbounded domain. The density of
the medium is 1000 kg/m3 and the speed of the wave is 1500 m/s.
Because one of the dimensions is quite larger than the two other
ones, this three-dimensional problems can be simplified as a
general two dimensional problems. The numerical model of this
inder of order n located in the infinite domain.



Fig. 6b. The numerical model of the acoustic radiation problem.

Fig. 7. The imaginary part of pressure as a function of the polar angle along the
artificial boundary at different geometrically non-dimensionalized wave numbers:
(a) ka = 0.2p; (b) ka = 0.4p; (c) ka = 0.6p.
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problem is shown in Fig. 6b. The center of the cylinder is located at
(0, 0) and the artificial boundary B with the center at (0, 0) is a cir-
cle of radius R = 1. The analytical solution to this acoustic radiation
problem is given by:

p ¼ HnðkrÞ cosnh
HnðkaÞ ð39Þ

where Hn is Hankel function of the first kind of order n and k is the
wave number.

For the purpose of testing the performance of the proposed
method, for mode n = 2, three different geometrically non-
dimensionalized wave numbers (ka = 0.2p, 0.4p, 0.6p) are
employed to compute the acoustic pressure distribution along
the artificial boundary using HS-FEM with average mesh size of
0.08 m. The imaginary part of acoustic pressure along the artificial
boundary as a function of the polar angle is plotted in Fig. 7. For the
purpose of comparison, the numerical results obtained from the
standard FEM and HS-FEM with the same mesh together with
the analytical solutions are presented in the figures. It can be seen
from the figures that both FEM and HS-FEM can provide reliable
results which agree well with the exact solution at small wave
numbers, while at large wave numbers, the numerical results
obtained from FEM may depart from the exact solution, the results
of HS-FEM are still in good agreement with the exact one. This
numerical example demonstrates that HS-FEM can provide very
properly softened stiffness of the numerical model and can achieve
more accurate results than the FEM.

Furthermore, for mode n = 3, the directivity patterns of the radi-
ated acoustic pressure with different geometrically non-
dimensionalized wave numbers (ka = 0.1p, 0.3p, 0.5p, 0.7p) are
also considered. The HS-FEM results in comparison to the FEM
results and analytical solutions are depicted in Fig. 8. From the
results, it can be seen that both HS-FEM and FEM results are in
good agreement with the analytical solutions for small wave num-
bers. When it comes to large wave numbers, the results from HS-
FEM will stand out and are more accurate than those from FEM.
This again verifies that HS-FEM performs better than FEM and
can achieve more accurate results for acoustic radiation problems,
especially for large wave numbers.

6.1.2. Convergence study
This section will investigate the convergence rate of the present

HS-FEM for acoustic radiation problems by employing several dif-
ferent meshes. Fig. 9 depicts the relative error as a function of the
average mesh size at different wave number of k = 3p and k = 6p
for both HS-FEM and FEM results. It can be found from the figure
that: for small wave number (k = 3p), the relative error of both
HS-FEM and FEM are about 10%, while the results of present HS-
FEM are more accurate than that of FEM results. Besides, the
results of HS-FEM converge faster than that of FEM do when the
mesh gets finer. For large wave number (k = 6p), the relative error



Fig. 8. The directivity patterns of the radiated acoustic pressure with different geometrically non-dimensionalized wave numbers: (a) ka = 0.1p; (b) ka = 0.3p;(c) ka = 0.5p;
(d) ka = 0.7p.

Fig. 9. Comparison of convergence rate of the results from HS-FEM and FEM with
different meshes.

Fig. 10. The relative error in the H1 semi-norm against the wave number k for both
HS-FEM and FEM solutions.
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Fig. 12. Evolution of the relative error in H1 semi-norm as a function of 1/h with
varying h and keeping k3h2 constant.
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of both HS-FEM and FEM will increase significantly, compared to
FEM, the HS-FEM solutions is obviously better. These findings
show that HS-FEM works very well and converges much faster
than FEM.

6.1.3. Control of the numerical error
Eq. (38) shows the upper bound of the relative error in H1 semi-

norm for the method of hp version. For linear elements (p = 1) used
in this paper, the relative error is bounded by:

g ¼ jpe � phj1
jpej1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
X ð~ve � ~vhÞTðve � vhÞdXR

X ð~ve � veÞ2dX

vuut 6 C1khþ C2k
3h2

ð40Þ
Eq. (40) means that the control of the relative error requires

considering both kh and k3h2. Fig. 10 shows the relative error
against the wave number k for both HS-FEM and FEM solutions.

For the purpose of discuss, cases of kh = 1 (the interpolation
error) and k3h2 = 1 (the pollution error) are also plotted in the fig-
ure. It can be observed from the figure that the relative error
obtained from HS-FEM and FEM are both very small for low wave
numbers. However, the relative errors increase quickly as the wave
number k grows, while HS-FEM performs better than the FEM and
can achieve more accurate results for the full wave number range.

Furthermore, in order to study the control of numerical error
with the present method clearly. The relative errors are computed
on a range of different meshes by keeping kh = cst and k3h2 = cst.
Fig. 11 shows the relative error against 1/h with varying h and
keeping kh constant using HS-FEM and FEM. From the results in
Fig. 11, it can be found that: for small wave number range, the
interpolation error (the first term in Eq. (40)) is well controlled if
kh is kept constant for both HS-FEM and FEM; for large wave num-
ber range, the upper bound of the relative error of FEM results will
increase dramatically. It means that the pollution error will domi-
nate the relative error because the pollution error (the second term
in Eq. (40)) will increase linearly with wave number k = 1/h. While
the HS-FEM results do not deteriorate significantly with the
increase of k. This means that a certain level of relative error can
be controlled by the gradient smoothing techniques used in the
HS-FEM. Fig. 12 shows the relative error against 1/h with varying
h and keeping k3h2 constant. From the results in Fig. 12, the upper
bound of relative error is well controlled for both HS-FEM and FEM
k3h2 is kept constant. This is because not only the interpolation
error but also the pollution error can be controlled in the case k3-
Fig. 11. Evolution of the relative error in H1 semi-norm as a function of 1/h with
varying h and keeping kh constant.
h2 = cst based on Eq. (40). Compared to FEM, the HS-FEM still pro-
vide more stable results.
6.2. An arbitrary shaped radiator

In this example, as shown in Fig. 13, a realistic acoustic radia-
tion problem of an arbitrary shaped radiator is investigated to
demonstrate the property of the proposed HS-FEM. The Neumann
boundary condition with vn = 10�4 m/s is imposed on the surface of
the radiator. The artificial boundary B is still a circle of radius R = 1
with the center at (0, 0) and the parameters of the fluid medium
are the same as the problem discussed in the previous section.
The computational domain consists of 1548 nodes and 2948 trian-
gular elements. The real part of the acoustic pressure on the artifi-
cial boundary as a function of the polar angle are plotted in Fig. 14.
Since the analytical solution for this problem is unavailable, a ref-
erence results obtained using FEM with a very fine mesh are also
presented in the figures for comparison. From the figures, it can
be found that the scatter acoustic pressure distribution obtained
from HS-FEM are very close to the reference results in both large
and small wave numbers. While the corresponding results
obtained from FEM depart from the reference results a lot when
the wave numbers get large. This numerical example again indi-
cates that the HS-FEM perform much better and can give much
more accurate results than FEM for acoustic scattering problems.
Fig. 13. The acoustic radiation problem with a irregular radiator.



Fig. 14. The real part of the acoustic pressure as a function of the polar angle along the artificial boundary at different wave numbers for the irregular radiator: (a) k = p; (b)
k = 2p; (c) k = 3p; (d) k = 4p.
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6.3. 2D car acoustic radiation problems

In this section, a two-dimensional steady-state acoustic radia-
tion problem of 2D car is considered. As shown in Fig. 15, assuming
the shape of the car is prismatic, and then this 3D problem can be
simplified to 2D. Note that the exterior radiated noise of car body is
mainly from the vibration of engine, only the front panel and hood
of engine is subjected to a vibration velocity of 10�3 m/s. The mate-
rial parameters are taken as air density q = 1.225 kg/m3 and sound
speed c = 340 m/s. In order to obtain the finite computational
domain, the infinite domain is truncated by the artificial boundary,
which is still a circle, and the observation point A is on the circle
Fig. 15a. The geometry of the 2D car. Fig. 15b. The numerical model of the acoustic radiation problems of 2D car.



Fig. 16. The frequency response at observe point obtained from FEM and HS-FEM.
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with angle h = 15. The discretized numerical model consists of
3804 nodes and 7352 triangular elements with an average mesh
size of 0.1 m. The frequency response analysis at observe point is
conducted to study the acoustic distribution of this problem.
Fig. 16 shows the numerical results obtained from FEM and present
HS-FEM. The frequency range is chosen from 1 Hz to 400 Hz and
the interval is 1 Hz. Note that there is no analytical solution to this
problem, the FEM solution with a very fine mesh (11,788 nodes
and 23,139 triangular elements) is also presented as a reference
for comparison. From the figure, it is found that both FEM and pre-
sent HS-FEM solutions agree well with the reference solution in the
low frequency range. With the increase of the frequency, the
results from FEM may be unreliable, while the present HS-FEM
can still provide very accurate results. This practical numerical
example again demonstrates that the HS-FEM performs better
and can achieve much more accurate results than FEM for two-
dimensional radiation problems, especially for high frequency
range.
7. Conclusions

In this paper, the hybrid smoothed finite element (HS-FEM) is
combined with the well-known Dirichlet-to-Neumann (DtN)
boundary condition to give a HS-FEM-DtN model for two dimen-
sional acoustic radiation problems. Through the formulations and
the numerical results, several major concluding remarks can be
drawn as follows:

(1) Coupling of the HS-FEM and the well known DtN boundary
condition works well for two dimensional acoustic radiation
problems and can provide very stable numerical results.

(2) The HS-FEM is equipped a scaling factor a that controls the
contributions from the node-based smoothed finite element
method (NS-FEM) and standard FEM. This novel combina-
tion makes the best use of the ‘‘overly-soft” property of the
NS-FEM and the ‘‘overly-stiff” property of the standard
FEM. Therefore the HS-FEM is capable to provide a ‘‘nearly
exact” solution with very coarse meshes.

(3) For the two dimensional acoustic radiation problems dis-
cussed in this paper, the implementation of the HS-FEM is
very easy since no additional parameters and degrees of
freedom are needed, hence it can be implemented from
the original FEM code with little modification.
(4) For the practical acoustic radiation problems with compli-
cated geometry, the HS-FEM performs better than the FEM
with the same mesh. It indicates that the HS-FEM is capable
to solve the real engineering problems with very accurate
results.
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