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Abstract—It is challenging to predict the patterns of 

radiated acoustic field from a complex moving source while 

this topic is important in the field of ocean acoustics. A possible 

method is to decompose the complex field into the addition of 

fundamental sources such as monopolar and dipolar ones. In 

this study, we derive the analytical solution of radiated acoustic 

fields generated by a moving monopolar or dipolar source, and 

the combination of them based on the Lorentz transformation. 

The analytical expressions of the radiated sound pressure by a 

moving monopolar or dipolar source are given with no limit on 

the moving direction and excitation frequency. Numerical 

simulations are conducted to reveal the Doppler effect of the 

moving sources and the potential application of the 

combination of monopolar and dipolar sources to simulate 

complex fields. This work may help design acoustic models to 

predict the radiated sound field by complex sources in the field 

of ocean engineering.  

Keywords—Lorentz transformation, Radiated acoustic field, 

moving target, monopolar and dipolar sources, Doppler effect, 

Marine Engineering 

I. INTRODUCTION  

The objective of target motion analysis is to ascertain the 
motion characteristics of unidentified targets in order to 
achieve precise target positioning and tracking. Conventional 
techniques for analyzing and positioning underwater targets 
typically involve the use of active localization methods. 
These methods involve the deployment of active sources that 
emit directed beams towards underwater targets, enabling the 
extraction of motion data from the reflected signals. 
Although this method offers high accuracy and practicality, it 
is hindered by the drawback of diminished stealth 
capabilities due to the requirement of emitting powerful 
sound fields for effective functionality. 

Passive acoustic detection methods offer an alternative 
approach by utilizing the noise emissions of underwater 
targets to extract essential information such as their location 
and movement. This technique has garnered considerable 
interest from researchers on a national and international scale 
due to its improved stealth capabilities and practicality. It is 
important to note that the movement of targets influences the 
modulation of the acoustic field radiated and scattered. 
Hickling and Robert initially conducted calculations on 
sound scattering by a movable rigid sphere in an ideal 
medium [1], with Temkin and Leung later expanding this to 
include viscous fluids [2]. Olsson utilized the null-field 
approach and T-matrix method to present findings on 
acoustic scattering by a movable rigid body in a fluid [3]. 

Venkov developed a formula accounting for the impact of 
Lorentz transformations on scattering amplitude and 
analyzed the scattering of plane acoustic waves by a moving 
soft sphere in open space [4]. Ma introduced an analytical 
time-domain formulation based on the Ffowcs Williams-
Hawkings (FW-H) equation for predicting the acoustic 
velocity field generated by moving objects [5]. More recently, 
Roux et al. investigated the acoustic radiation force exerted 
on a moving monopolar source, demonstrating that the 
asymmetry of the emitted field due to the Doppler effect 
results in a radiation force opposing the source's motion [6]. 
They also showed that a translating dipolar acoustic source 
experiences a self-induced radiation force opposing its 
motion [7]. 

 The research presented above indicates that the 
scattering and radiated acoustic field of a target in motion 
exhibit greater complexity in comparison to those of 
stationary targets. The acoustic fields are influenced by the 
relative movement of sources, offering potential for 
applications in source localization and identification. This 
study develops equations utilizing Lorentz transformation to 
determine the radiated acoustic field of a single moving 
monopolar and dipolar source. Through the application of 
the superposition principle to acoustic fields, the intricate 
acoustic field produced by moving targets can be replicated 
by combining moving monopolar and dipolar sources with 
specific weights and parameters. 

II. WAVEFIELD RADIATED BY A MOVING MONOPOLAR 

SOURCE  

When a time-varying source Q(t) is situated at a 
particular location within a fluid medium, the point mass 
source can be considered analogous to a uniformly pulsating 
sphere with an infinite radius. This analogy is based on the 
concept that the influx and efflux of mass can be compared 
to the expansion and contraction of the sphere, which serves 
as a monopole source. 

A. Wave equation by a moving monopolar source 

The pressure is expressed as P = P0 + p, with P0 
denoting the static pressure and p representing the sound 
pressure. Density is denoted as ρ = ρ0 + ρʹ, where ρ0 stands 
for the static density and ρʹ represents the density 
perturbation. For simplicity, higher-order quantities are 
disregarded, and the fluid is assumed to be inviscid and 
homogeneous. Consequently, this assumption facilitates the 
derivation of the motion equation: 
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where v  is the acoustic velocity. Similarly, the continuity 

equation can be written as: 
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The equation of state is given with the relation to the 
sound speed c0: 
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Baes on (1), (2) and (3), the wave equation can be easily 
obtained: 
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To simplify subsequent calculations, it is convenient to  
introduce the velocity potential denoted by  , defined as 

0(1/ ) = −v  so that /p t=   , and then the wave 

equation can be expressed in terms of  : 
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Now, let us examine the activation of a monopolar sound 
emitter within the context of the wave equation. This 
monopolar emitter can be viewed as a mass emitter, with its 
strength dictated by the instantaneous mass flow rate q(t) 
produced by the emitter. Subsequently, the source function 
q(t)δ(r-r0) will be integrated on the right-hand side of the 
wave equation, where δ(r-r0) represents the delta function. 
Therefore, for a monopolar emitter traveling at a velocity U 
= Mc0x along a stationary x-axis (where M is the Mach 
number), the wave equation can be formulated as:  
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B. Resolution of the wave equation 

Initially, it is important to examine the scenario of a 
stationary monopolar source with a moment of M equal to 
zero. In accordance with acoustic principles, when dealing 
with a simple harmonic motion, the resolution to the wave 
equation is as follows: 

 0( / )
( , )
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r t

r
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Where 2 2 2r x y z= + + is the radial distance. The 

investigation now shifts towards examining the resolution of 
the wave equation in scenarios involving a mobile 
monopolar source. In such instances, the application of the 
Lorentz transformation method, a fundamental aspect of 
special relativity, becomes pertinent. Let us define 

21/ 1 M = −  as the 'Lorentz acoustic boost'. The Lorentz 

transformation can be expressed as: 

 

0

0 0

( )

' ( )

x' x Μc t

y' y

z' z

c t c t Μx





= −


=


=
 = −

 (8) 

And Eq. (6) becomes: 
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Given that the right side of Eq. (9) is null when x' ≠ 0 for 

all t' based on the feature of the delta function. Using 
( / ) ( )x' x'  = , we can obtain: 
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Here, we introduce a second set of variables: 
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Subsequently, the wave equation can be transformed into: 
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It is apparent that following the substitution of variables, 
the wave equation governing a monopole source in motion 
closely resembles that of a stationary source. As a result, the 
solution to equation (12) can be determined: 
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And now, we need to revert the solution's form back to 
the original function of (x, y, z, t). The first step is in terms of 

( , )r' t'  : 
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with 
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where  21/ 1 M = − , we obtain: 
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Hence, the solution for the mobile monopolar source is 
derived. Furthermore, the distance R, denoting the separation 
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between the source and the point of observation, can be 
specified (M < 1): 

 0 1
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− +
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−
 () 

with 
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Then the final solution becomes: 
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The pressure field then can be expressed as: 
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with the derivate 'q dq dt= . 

III. WAVEFIELD RADIATED BY A MOVING DIPOLAR SOURCE  

When a force that varies with time, denoted as f(t), is 
applied to a specific point in a fluid medium, it can be 
likened to an acoustic dipole. The disturbances on each side 
of the vibrating sphere demonstrate contrasting phases, 
leading to the emission of dipolar radiation. 

A. Wave equation by a moving dipolar source 

Consider a dipolar source moving at a velocity U = Mc0x 
along a fixed axis x. Define the force f(r, t): 

 0( , ) ( ) ( ) ( ) ( )t t x Mc t y z  = −f r f  (21) 

The force f(t) is assumed to be arbitrary for generality, 
allowing f(t) to be expressed as: 

 T( ) sin( )( , , )t F ωt x y z=f  (22) 

with (x, y, z)T a unit vector, F the force amplitude and ω the 
angular frequency. 

As the essence of the dipolar source lies in the vibration 
of the fluid medium, we introduce the displacement u such 
that / t=  v u . Just as with the scenario involving a mobile 
monopolar source, we can establish the wave equation for a 
dipolar source in motion: 
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With the Lorentz transformation of Eq. (8), given that the 
right side is null when x' ≠ 0 for all t', and using 

( / )x'  = ( )x' , the equation can be rewritten: 
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By employing the same substitution of variables as Eq. 
(11), the final wave equation transforms into: 

 
2 2

2 2 2

0 0 0

1
( ) ( ) ( ) ( )'' t'' x'' y'' z''

c t'' c


  




 − = −



u
u f  (25) 

B. Resolution of the wave equation 

The wave equation for a moving dipolar source bears 
resemblance to that of a moving monopolar source, with the 
exception of the coefficient component. Consequently, the 
solution for the former can be easily derived: 
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After establishing the distance R between the source and 
the observation point in the context of solving for the moving 
monopole source, the ultimate solution can be articulated by 
utilizing the original variables via a similar process of back 
substitution: 

 0

2

0 0 1

( )

4

t R c

c R

−
=



f
u  () 

where R and R1 are the same as Eqs. (17) and (18). 

 The pressure field can be represented by the relationship 

between the displacement u and the pressure p, the pressure 

field then can be expressed as: 

 2 0
0 0
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( )1

4

t R c
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R


−
= −  = − 



f
u   () 

IV. STIMULATION OF ARBITARY COMPLEX WAVEFIELD 

Having derived the mathematical equations for the sound 
pressure produced by a mobile monopolar source and a 
mobile dipolar source along a stationary axis x, we can 
construct a visual representation depicting the overall and 
specific moving coordinates of both sources, as depicted in 
Fig. 1. 

 

(a) the monopolar source 

 

(b) the dipolar source 

Fig. 1. Global and local moving coordinates 
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The acoustic field distribution in various directions and 
speeds for specific sources can be determined. By applying 
the superposition principle of acoustic fields, a combination 
of monopolar and dipolar sources can be utilized as 
fundamental sources to replicate the complex acoustic field 
produced by a moving target. To improve the visualization of 
the acoustic field, simulations are conducted in a two-
dimensional acoustic field. Assuming the speed of sound 
underwater is 1500 m/s, although typical underwater vehicles 
move at speeds below 100 m/s, simulations are performed 
with speeds up to 500 m/s to better illustrate the Doppler 
effect of the radiated field caused by spatial motion. These 
simulations are carried out using Matlab R2023b. 

A. A single moving monopolar source 

Initially, we investigate the Doppler shift induced by a 
monopolar source in motion at a consistent speed, analyzed 
at varying time intervals. Specifically, we consider a 
monopolar source in motion along the x-axis with a 
frequency of 5000 Hz and a velocity of 300 m/s. The 
acoustic pressure distributions at time instances of 0.0001s, 
0.0002s, and 0.0003s are depicted in Fig. 2. 

 

Fig. 2. Radiated acoustic field by a moving monopolar source with the 

speed v=300 m/s in the x-axis direction at the frequency of 5000 Hz 

for different time.  

Furthermore, Fig. 3 illustrates the pressure distributions 
of a monopolar source with varying velocities concurrently. 
Assuming the monopolar source oscillates at a frequency of 
5000 Hz and travels along the x-axis, simulations were 
conducted to analyze the resulting acoustic field distributions 
when the velocities of motion are 100 m/s, 300 m/s, and 500 
m/s, each evaluated at the time instant of 0.0002 seconds. 

 

Fig. 3. Radiated acoustic field by a moving monopolar source at different 

moving speed in the x-axis direction. The time is fixed as t=0.0002s. 

As illustrated in Fig. 3, it is apparent that an increase in 
the velocity of the monopolar source results in a higher 
frequency of the radiated field detected by the observation 
point in the forward direction, as indicated on the right side 
of the field. Conversely, the frequency perceived by the 
observation point situated behind the source decreases, as 
shown on the left side. This observation aligns with the 
principles of the Doppler effect. Nevertheless, when the 
velocity of the object is relatively lower, such as at 100 m/s, 
the manifestation of the Doppler effect is less pronounced. 

B. A single moving dipolar source 

In a similar manner, the acoustic field distribution is 
computed at various time points (t=0.0001s, 0.0002s, 
0.0003s) and speeds (v=100m/s, 300m/s, 500m/s) as the 
dipolar source moves along the axis x with a frequency of 
5000. The orientation of the dipolar source's vibration can 
vary. This study focuses on two distinct scenarios: one where 
the oscillation direction aligns with the motion direction, and 
another where it is perpendicular to the motion direction. 

First, we show the spatial pressure patterns where the 
oscillation direction is consistent with the direction of motion, 
as shown in Figs. 4 and 5. 

 

Fig. 4. Radiated acoustic field by a moving dipolar source with the speed 

v=300 m/s in the x-axis direction source. The oscillation direction is 

consistent with the moving direction. 

 

Fig. 5. Radiated acoustic field by a moving dipolar source at different 

speed in the x-axis direction. The time is fixed as t=0.0002s and The 

oscillation direction is consistent with the moving direction. 

 In addition, below in Figs. 6 and 7 are the simulation 
results when the oscillation direction is perpendicular to the 
direction of motion. 

 

Fig. 6. Same as Fig. 4 except that the vibration of the dipolar source is in 

the y-axis direction which is perpendicular to the direction of motion. 

 

Fig. 7. Same as Fig. 5 except that the vibration of the dipolar source is in 

the y-axis direction which is perpendicular to the direction of motion. 
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An analysis of the model indicates that the directional 
nature of the dipolar sound source results in noticeable 
changes in the sound field due to the Doppler effect at speeds 
of 300 m/s and 500 m/s. However, akin to the scenario with a 
monopolar sound source, the Doppler effect is minimal at 
lower speeds (v=100 m/s). 

C. Combination of monopolar and dipolar sources 

Thus far, we have developed models for simulating the 
prediction of pressure fields emitted by monopolar and 
dipolar sound sources at various speeds, excitation 
frequencies, and directions. By leveraging these models, we 
can employ the concept of acoustic field superposition to 
combine these two types of sound sources and simulate 
intricate acoustic fields resulting from the movement of 
targets.  

Initially, we examine a scenario in which a monopolar 
source and a dipolar source operate at a common frequency 
of 5000 Hz. It is assumed that two monopolar sources are in 
motion along the x-axis in opposite directions, while a 
dipolar source moves along the negative y-axis, with its 
vibration direction aligned with its motion. The resulting 
pressure field pattern resembles that of a bear, as illustrated 
in Fig. 8.  

 

Fig. 8. Complex acoustic field by the addition of two monopolar and one 

dipolar sources at the same frequency 5000 Hz. 

Next, we examine the occurrence of the dipolar source 
having a frequency double that of the monopolar source at 
10000 Hz. Two monopolar sources are observed to move 
along the x-axis in opposite directions, while the dipolar 
source moves along the y-axis in a positive direction. 
Furthermore, the dipolar source oscillates in alignment with 
its motion. The pressure field is illustrated in Fig. 9. 

 

Fig. 9. Complex acoustic field two monopolar and one dipolar sources at 

different frequencies. The frequency for the monopolar sources is 

5000 Hz, while for the dipolar source is 10000 Hz. 

In brief, the integration of mobile monopolar and dipolar 
sources enables the simulation of radiated acoustic fields 
from intricate targets. Parameters such as initial position, 
motion direction, velocity, frequency, and others for both 
monopolar and dipolar sources can be adjusted accordingly, 
offering a versatile numerical tool with substantial 
adaptability and comprehensiveness for simulating mobile 
complex targets. 

V. CONCLUSION 

In this paper, we aim to replicate the intricate acoustic 
field produced by mobile targets using monopolar and 
dipolar sources. Initially, the wave equation for a moving 
monopolar and dipolar source is derived via the Lorentz 
transformation. Subsequently, the wave equation is solved 
through parameter substitution, facilitating the derivation of 
analytical expressions for the radiated acoustic field of the 
moving monopolar and dipolar sources.  

Following this, simulations are conducted on the spatial 
distribution of the acoustic field emitted by the moving 
monopolar and dipolar sources. The numerical simulations of 
acoustic field patterns at different times for a constant speed 
reveal significant Doppler effect for both monopolar and 
dipolar sources at higher speeds. Observing the acoustic field 
patterns at various speeds simultaneously indicates that, for a 
fixed source frequency, the Doppler frequency shift induced 
by the target's motion is pronounced at high speeds but weak 
at lower speeds. 

Subsequently, by combining multiple monopolar and 
dipolar moving sources without constraints on their moving 
direction, speed, and excitation frequency, complex acoustic 
fields can be generated as anticipated. In the subsequent 
phase, efforts will be directed towards solving the inverse 
problem of characterizing a moving complex acoustic field 
by amalgamating several monopolar and dipolar sources. 
This research has the potential to aid in the development of 
acoustic models for ship radiated noise [8], directional 
transducer arrays [9], and underwater vehicle clusters [10]. 
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