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Abstract-The Bessel beam has been proved to show several 

advantages over the plane wave for its superior characteristics, 

including nondiffraction and self-reconstruction properties. The 

Bessel beam is characterized by an important parameter, called 

the half-conical angle, which describes the angle of the planar 

wave components of the beam relative to the beam axis. In this 

research paper, the T-matrix method (TMM) is combined with a 

Bessel beam to compute the acoustic scattering field. The 

backscattering form functions of a tungsten carbide sphere and a 

steel spherical shell are calculated and curved as a function of 

dimensionless frequency. Several Rayleigh resonance patterns 

are depicted to further confirm the orders of resonance. By 

selecting appropriate half-conical angles, several corresponding 

resonances can be suppressed and this phenomenon may have 

some potential value in practical applications. 
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I. INTRODUCTION 

In the past few decades, there has been considerable interest 
by many researchers in the study of acoustic resonance 
scattering by underwater elastic targets in plane waves, through 
experimental and theoretical methods [1- 6]. Generally, 
resonance scattering fields will carry some use ful information 
relevant to unknown scatterers and this will help to develop 
new techniques for the detection, location and recognition of 
underwater objects. To identify the resonance mode orders of 
an elastic object, the pure resonance scattering amplitude (R SA ) 
should be obtained first. To this end, Flax, Dragonette and 
Uberall first utilized theoretical methods by subtracting a 
specularly re flected wave amplitude from the total scattering 
amplitude (T SA ) [1]. For the same purpose, experimental 
methods have also been devised, including the MIIR method 
[7-S] and the method of Billy [9]. In the present paper, the T­
matrix method, which belongs to the theoretical separation 
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method, is adopted to calculate the pure R SA and has been 
demonstrated to be effective for an elastic sphere [10]. 

Recently, the Bessel beam has been developed rapidly in 
optics [11-12], electromagnetics [13-14] and acoustics [15-17]. 
It is demonstrated that the Bessel beam has several advantages 
over ordinary plane waves with the characteristics of non­
diffraction [IS] and the ability to self-reconstruct[19]. To our 
knowledge, exploration of a method of using the characteristics 
of acoustic Bessel beams is somewhat limited. In the literatures 
published [20], [16], partial wave series expansion (PW SE )  is 
the main method of studying acoustic Bessel scattering. Hence, 
we combine the TMM with the Bessel beam to overcome the 
shortcomings of PWSE and introduce a power ful tool for 
further exploration on acoustic scattering under the 
illumination of a Bessel beam. 

II. THEORETICAL FORMULA nON 

A. T-matrix method 

In this section, we briefly give the theoretical formulas of 
an elastic scatterer immersed in fluid interacted with an ideal 
acoustic Bessel beam by using TMM. To obtain the transition 
matrix, the integral representations for the displacement fields, 
the boundary conditions and expansions of surface fields 
should be provided first. 

Now consider an elastic scatterer with its geometry shown 
in Fig. 1, the host medium is homogeneous water with 
density P , Lame parameter A and wavenumber k . The 
layered object has an empty core (a cavity) surrounded by an 
elastic layer with density Po ' Lamb parameters \ and f.1o ' and 
longitudinal and transverse wavenumbers kp and ks ' 

respectively. The time factor e-lWl is suppressed throughout. 
The outer surface of the object is denoted by S and inner by So' 
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Fig. I. Geometry of a layered obstacle 

and their unit normal � and �o are taken as outward pointing. 
The explanations of the following variables are given in detail 
in [21]. 

The integral representations for the displacement fields in 
the fluid and in the elastic layer are given as follows: 

i kf [ '  ( )  , {u r outside S 
u + s n·u+ V·G -V·u+n·G]dS= 

0 r inside S 

r between S and So 
r outside S or inside So 

(1) 

(2) 

Green's dyadic in fluid and elastic layer are expanded in 
spherical harmonic functions respectively: 

(3) 

(4) 

And the incoming and scattering fields 

(5 ) 

(6) 

Substitute (3)-(6) into (1) and (2), the integral 
representations of incident and scattered coefficients can be 
derived immediately. 
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a = -ikf [n· u V· <I> -V . un· <I> ]dS (7) n s + n + n 

J, = ikf [n· u V· Re<l> -V . un· Re<l> ]dS (8 ) n s + n + n 

The corresponding boundary conditions on outer 
surface S and inner surface So are listed in the following 
expressions: 

n·u =n'u . } + -, 

AV,u =n·t . + -, 

nxt = 0 

on S 
(9) 

Finally, the incident and total scattered field coefficients are 
related through the transition as given by 

And the transition matrix 

where 

T = -[Re Q (ReR + TOprl (ReP + TOp) - ReM] 

x [ Q (ReR + TORrl (ReP + TOp) -Mt 

(10) 

(11) 

(12) 

(13) 

Specially, when To = 0, (11) yields the transition matrix for a 
homogeneous elastic body in water. To acquire the pure 
scattering field, a rigid background should be subtracted from 
the total scattered coefficients in (10), 

.(" pure = '"' (T _ rigid ) J n L... n.n' n,n' an' 
n' 

The details of T;,r:!�d can be found in [17]. 

B. Incident coefficients of the Bessel beam 

(14) 

In the case of Bessel beam incidence, the incident 
coefficients of expression are obviously different from those of 
an ordinary plane wave. By using the spherical harmonic 
expansion and addition theorem of the Legendre polynomial, 



the incident coefficients under an ideal zeroth-order Bessel 
beam are as follows 

(COS (mrp), 
P,,"' ( cos (); ) P,,"' ( cos/3) . 

sm(mrp), 

III. NUMERICAL EXAMPLES 

cr = e

J cr=o 

(15) 

In order to study the Bessel beam's modification to the 
coupling to resonances of elastic scatterers, two numerical 
examples are presented by using the T -matrix method, 
including an elastic sphere and spherical shell. 

A. Sphere 

In the first part, the tungsten carbide (WC) sphere will be 
discussed. The backscattering form functions are used to 
describe the far-fields characteristics of the we sphere 
immersed in water under the illumination of the ideal zeroth­
order Bessel beam. The longitudinal and shear velocities of the 
elastic sphere are 6650 mls and 3981m/s, respectively. The 
density of we is 13.8 g/cm3• The fluid considered here is water 
with velocity c = 1482 .5 mls and p = 1 g/cm3. 

To facilitate the discussion in the following, several half­
conical angles are selected specially which are defmed /3n as 

the lowest root of P" (cos /3n ) = O. The 6-digit approximations 

to /3n for n= 2,3,4 and 5 are /32 =54.7346 0, /33 =39.231Y , 

/34 = 30.5556 0  and /35 = 25 .017T , respectively. 

Figs. 2-4 plot rigid, total and pure backscattering form 
function modulus versus dimensionless frequency ka for a 
we sphere in water illuminated by a Bessel beam with the 
different selective half-conical angles given above. f3 = 0 
gives the case of plane wave illumination. It is shown that after 
subtracting the rigid backscattering from the total, the pure 
backscattering can be obtain immediately. By selecting the 
lowest roots of p" (cos /3n) = 0, the corresponding n th order 
Rayleigh resonance is suppressed. The first five orders of 
Rayleigh resonance can be clearly identified at ka = 1 .45 , 
7 .06 , 10.46 , 13.38 and 16.10 . The corresponding bistatic 

patterns of Rayleigh resonance are depicted in Figs. 5-9. This 
demonstrates the accuracy of resonance orders by the lobe 
numbers in bistatic patterns and the suppression effect of 
selective Bessel beams. 

B. Spherical shell 

In the second part, the steel spherical shell will be discussed. 
Similarly, the backscattering form functions are also studied. 
The longitudinal and shear velocities of steel are 5 854 mls and 
3150mls, respectively. The density of we is 7.84 g/cm3. The 
fluid considered here is also water. The rigid, total and pure 
backscattering form function modulus versus dimensionless 
frequency kG for a steel spherical shell in water illuminated by 
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Fig. 2. Rigid backscattering form function modulus versus dimensionless 

frequency kG for a WC sphere in water illuminated by Bessel beam 
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Fig. 3. Total backscattering form function modulus versus dimensionless 

frequency kG for a WC sphere in water illuminated by Bessel beam 
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Fig. 4. Pure backscattering form function modulus versus dimensionless 

frequency kG for a WC sphere in water illuminated by Bessel beam 
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Fig. 5. Bistatic pattern of first-order Rayleigh resonance of a we sphere in 

water when ka = 1 .45 
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Fig. 6. Bistatic pattern of second-order Rayleigh resonance of a we sphere 

in water when ka = 7 .06 
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Fig. 7. Bistatic pattern of third-order Rayleigh resonance of a we sphere in 

water when ka = 10.46 
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Fig. 8. Bistatic pattern of fourth-order Rayleigh resonance of a we sphere in 

water when ka = 13 .3 8 
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Fig. 9. Bistatic pattern of fifth-order Rayleigh resonance of a we sphere in 

water when ka = 16.10 
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Fig. 10. Rigid backscattering form function modulus versus dimensionless 

frequency ka for a steel spherical shell in water illuminated by Bessel beam 



 

Fig. 11. Total backscattering form function modulus versus dimensionless 

frequency ka  for an steel spherical shell in water illuminated by Bessel beam 

 

Fig. 12. Pure backscattering form function modulus versus dimensionless 

frequency ka  for an steel spherical shell in water illuminated by Bessel beam 

 

Fig. 13. Bistatic pattern of second-order Rayleigh resonance of a steel 

spherical shell in water when 1.836ka   

 

Fig. 14. Bistatic pattern of third-order Rayleigh resonance of a steel spherical 

shell in water when 2.24ka   

 

Fig. 15. Bistatic pattern of fourth-order Rayleigh resonance of a steel spherical 

shell in water when 2.597ka   

 

Fig. 16. Bistatic pattern of fifth-order Rayleigh resonance of a steel spherical 

shell in water when 2.915ka   
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a Bessel beam with different selective half-conical angles 
are plotted in Figs. 10-12, respectively. The bistatic patterns of 
Rayleigh resonance are also drawn in Figs. 13-16. The 
conclusion is the same as for a sphere. 

IV. CONCLUSIONS 

In this paper, two numerical examples are carried out to 
calculate the backscattering form functions of an underwater 
WC sphere and a steel spherical shell illuminated by a zeroth­
order Bessel beam with several selective half-conical angles. 
The T-matrix method is implemented and is demonstrated to be 
an effective tool to compute the scattered fields. The orders of 
Rayleigh resonance can be identified by the lobe number in 
bistatic patterns. With appropriate selection of specific Bessel 
beam parameters, some resonances can be suppressed and this, 
in turn, may provide use ful directions for engineering 
applications. Moreover, the T -matrix method is able to expand 
its range of applicability to study complex objects when 
interacted with a Bessel beam by improving its integration 
procedure; this is our interest for future work. 
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